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ABSTRACT 
Evacuation planning and emergency routing systems are crucial 
in saving lives during disasters. Traditional emergency routing sys
tems, despite their best efforts, often struggle to accurately cap
ture the dynamic nature of flood conditions, road closures, and 
other real-time changes inherent in urban disaster logistics. This 
paper introduces the ReinforceRouting model, a novel approach 
to optimizing evacuation routes using reinforcement learning (RL). 
The model incorporates a unique RL environment that considers 
multiple criteria, such as traffic conditions, hazardous situations, 
and the availability of safe routes. The RL agent in this model 
learns optimal actions through interaction with the environment, 
receiving feedback in the form of rewards or penalties. The 
ReinforceRouting model excels in executing prompt and accurate 
route planning on large road networks, outperforming traditional 
RL algorithms and shortest-path-based algorithms. A higher safety 
score and episode reward of the model are demonstrated when 
compared to these classical methods. This innovative approach to 
disaster evacuation planning offers a promising avenue for 
enhancing the efficiency, safety, and reliability of emergency 
responses in dynamic urban environments.
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1. Introduction

Changes in the global climate amplify the risk of water-related disasters such as flood
ing in urban areas. Since 1990, water-related disasters have accounted for 90% of the 
1000 most severe disasters (Hendricks et al. 2022). They are the most frequent and 
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expensive natural disasters nationwide, impacting millions of people’s lives and thou
sands of communities every year. Despite the cascading impacts of these extreme 
events, existing climate adaptation platforms do not fully understand the dynamics of 
urban community-level response due to the lack of detailed disaster management and 
efficient evacuation plans at the street level (Gharaibeh et al. 2021). Evacuation and 
emergency routing systems play a critical role in saving lives and minimizing damages 
during disaster events. Traditional emergency routing systems usually use remote- 
sensing images and hydrology methods to simulate the movement of the flood 
(Henonin et al. 2013, Feng et al. 2015) to obtain the flooding information. However, 
data obtained this way may result in imprecise flood prediction results due to its fail
ure to consider reshaped surface topography and micro-topographic variations com
monly seen in urban environments (Jha et al. 2012, Alizadeh et al. 2021, Kharazi and 
Behzadan 2021). Accurate and reliable data are crucial for the successful dispatching 
of rescue teams and navigating individuals from flooded areas to safe places during 
emergencies. Recent research (Cavdur et al. 2016, Yan et al. 2020) showed that the 
number of deaths is highly related to the efficiency of evaluation plans and routing 
during emergency events. Therefore, establishing a well-thought-out and timely evacu
ation strategy is critical in dynamic flooding situations where lives can be at risk 
(Meyer et al. 2018).

Traditional routing algorithms such as capacitated scheduling algorithm (Osman 
and Ram 2013), genetic algorithm (Gomes and Straub 2017), and cellular automata- 
based evacuation (Li et al. 2021a), have been used in the past for approximate 
solutions in evacuation routing during flood emergencies. However, the following limi
tations have been identified for the existing routing algorithms (Ding et al. 2021). 
Firstly, traditional routing algorithms are often based on pre-defined rules or heuristics 
and may not be able to adapt to real-time changes in flood conditions, road closures, 
or other dynamic factors. For example, in fast-changing flood situations, the traditional 
routing algorithms cannot update the routes in real-time based on the emergency 
situation (Duraipandian 2019, Ding et al. 2021). Second, traditional routing algorithms 
struggle with scalability issues when dealing with large-scale flood evacuations involv
ing a large number of affected individuals, multiple evacuation routes, and varying 
capacities of transportation resources. The computational complexity of these algo
rithms may increase significantly with the size and complexity of the evacuation scen
ario, leading to longer computation times and potential delays evacuation process. 
Finally, traditional routing algorithms lack the ability to deal with diverse data sources, 
such as gauge data, information from first responders (eg volunteered geographic 
information such as New York City 311 data), or inputs from affected individuals. The 
traditional methods rely solely on a few predefined parameters or heuristics, which 
makes it hard to capture the complexity and dynamics of flood emergencies. To over
come these limitations, innovative approaches, such as reinforcement learning techni
ques can be used.

Recent contributions in deep reinforcement learning (RL) (Sutton and Barto 2018) 
have shown unique advantages in solving conditional routing problems (Nazari et al. 
2018, Levy et al. 2020). In RL frameworks, agents represent individual people or a 
vehicle in a navigation environment, which are simulated to iteratively learn the 
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policies to maximize the reward feedback through interacting with an environment. 
This unique trait of RL makes it a natural choice for many data mining problems 
requiring incremental decisions. For example, RL can learn to solve complex route 
optimization problems in a dynamic environment by collecting experience, while trad
itional algorithms focus more on static environments (Qiu et al. 2019). Traditional 
methods also usually need to recalculate the route when the road network changes, 
but the RL approach can incrementally adapt to an unknown environment without 
retraining the entire data to reduce the computational time (Su et al. 2004). 
Furthermore, when a route optimization problem becomes a complex sequential deci
sion-making process due to unpredictable natural or artificial causes, solving those 
problems by traditional algorithms also becomes extremely complex or even NP-hard 
(Abe et al. 2019).

Although RL has been widely adopted in previous work for pathfinding and route 
optimization (Godfrey and Powell 2002, Xiong et al. 2017, Wei et al. 2018, Kim and 
Kim 2021), there are still many limitations to the current RL routing optimization 
approach. For instance, using RL in large graph networks can be challenging due to 
inefficient exploration strategies. Here, the RL exploration refers to the process of dis
covering and learning from new states and actions to improve the agent’s decision- 
making. Traditional RL methods may suffer from exploration issues in large graphs, as 
the search space can be large, leading to long computation times and sub-optimal sol
utions (Arora et al. 2017, Manchanda et al. 2019). Moreover, action settings in previous 
graph routing environments lack consideration of practical usage in the real world. 
For example, Levy et al. (2020) used compass direction (North, Northeast, East, 
Southeast, South, Southwest, West, Northwest) as an action space, which ignores the 
actual road network structure and causes invalid actions. For example, an agent will 
keep the same direction and slightly turn left or right when the agent wants to exit 
from a controlled-access highway to a freeway. Sharma et al. (2021) directly used 
nodes as an action space for fire evacuation route planning, but it is not applicable in 
a large network system with tens of thousands of nodes.

To address the challenges mentioned above, we developed a geospatial cyberin
frastructure-enabled reinforcement learning algorithm to improve the routing effi
ciency in a large real-world road network. The algorithm was trained using the 
National Science Foundation-funded FASTER (Acquisition of FASTER – Fostering 
Accelerated Sciences Transformation Education and Research) supercomputer to han
dle large road networks in a spatial database and support training data-loading tasks 
(Li and Zhang 2021).

Our RL routing algorithm uniquely considers multiple factors, including safety, reli
ability, and efficiency, in routing calculations under dynamic and variable weather and 
flooding conditions. This work makes several significant contributions to the fields of 
routing and emergency management research:

� We developed a novel graph-based RL environment, complete with efficient action 
and reward policies, which facilitates sophisticated routing optimization.
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� We integrated state-of-the-art reward optimization methods to train our graph- 
based RL algorithm, even under the complexities of large graph-based 
environments.

� We successfully scaled up the RL agent to accommodate large graph-based maps (eg 
over one thousand nodes) through the use of behavior cloning optimization methods.

� We incorporated near-real-time flood data in our experimental tests to assess the 
performance of the graph-based RL algorithm under realistic conditions.

The remainder of this article is organized as follows. Section 2 introduces the litera
ture background of our research. Section 3 presents the procedures of data prepar
ation. Section 4 describes our methodology of flooding environment development 
and the details of various optimization techniques. Section 5 implements experiments 
using the proposed method and analyzes the results. Section 6 discusses this method 
for different applications. The last section discusses conclusions drawn from the study.

2. Background

Floods are one of the most common hazards in the United States (Perry 2000, Zhang 
et al. 2014, 2019, Xu et al. 2020, Li et al. 2021b), which cause widespread devastation, 
resulting in the loss of life and damages to personal property and critical public health 
infrastructure. During a disaster, rapid response and effective evacuation activities are 
important in minimizing the loss of life or harm to the public during natural disasters 
(Murray-Tuite and Wolshon 2013, Huang et al. 2016, Yang and Shekhar 2017). Recent 
studies (Hai-bo and Yu-bo 2017, Qiu et al. 2019, Yin et al. 2019, Li et al. 2021a) found 
that traffic delays and unknown road conditions are the biggest challenges for effi
cient rescue. Moreover, in Lim et al. (2013)’s comprehensive review, flood evacuation 
models with different optimized variables, including travel times, travel costs, 
unknown traffic, travel distance, and identification of evacuation routes with an 
emphasis on flooding situations, are the main difficulties in flood disaster manage
ment. Many researchers focused on modeling flood evacuation as a decision-support 
system that combines all the information to build various spatial analysis models to 
help decision-makers (Liu et al. 2006, Zhang et al. 2016, Lee et al. 2020). For example, 
Liu et al. (2006) developed an adaptive evacuation route model based on the trad
itional Dijkstra shortest path algorithm (Dijkstra 1959) to pursue the goal of minimiz
ing the total evacuation time. Later, Zhang et al. (2016) developed a GIS-based 
decision support system that can acquire situational information on flood evolution, 
feasible routes, and high-risk areas for the flood detention basin. To evaluate the per
formance of the flood evacuation model, Li et al. (2019b) simulated the flood evacu
ation with a multi-agent system in a virtual reality environment. In recent studies, Lee 
et al. (2020) modeled the spatial and temporal inundation information with a non-lin
ear auto-regressive model to plan the evacuation route, and (Li et al. 2021a) devel
oped an algorithm that couples high-resolution hydrodynamic and cellular automata- 
based evacuation route planning for flooding situations.

However, these existing routing algorithms suffer from several limitations (Delling 
et al. 2012, Chen et al. 2014, Zhang, Yang, and Zhao 2016). They are often inefficient 
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in navigating complex and dynamic road networks. This is because they rely on prede
fined road information, which may not accurately reflect the actual road conditions 
during flooding events (Zhang, Yang, and Zhao 2016). Moreover, Staroverov et al. 
(2020) found that traditional routing algorithms are not well-suited for real-time 
updates and are limited in their ability to quickly adapt to changing road conditions. 
For example, the capacitated scheduling algorithm and genetic algorithm can only 
find approximate solutions (Kumari and Geethanjali 2010), and the cellular automata- 
based evacuation model is limited by the accuracy of the given information (Trindade 
et al. 2016). Only a few research are focused on developing routing algorithms that 
can be applied to real-time changing road networks with less external traffic data. For 
example, Delling et al. (2012) developed a robust mobile route planning model with 
limited connectivity information in the road network. Similarly, Mirahadi and McCabe 
(2021) proposed an evacuation management model that uses Dijkstra’s algorithms to 
dynamically calculate and foresee consequences, and thus create an evacuation deci
sion-support strategy. However, classical routing algorithms often assumed that there 
is only one objective and that the problem’s preset environment is completely deter
ministic. For example, Chen et al. (2014)’s path optimization model for vehicle evacu
ation uses the greedy methodology that tries out all possible routes in a network, but 
the model cannot work in a changing environment with unpredictable weather condi
tions and other social factors. Machine Learning (ML) researchers take advantage of 
the increasing computing power of GPUs to adapt a supervised neural network to 
solve the pathfinding problem and demonstrate the potential ability to solve many 
other location-based problems (Wang et al. 2009, Kumari and Geethanjali 2010, Yin 
et al. 2023). More recently, alternative methods have been proposed utilizing cluster
ing-based methods with evaluation algorithms for Vehicular ad hoc networks 
(VANETs). For instance, based on Bagherlou and Ghaffari (2018)’s proposed routing 
protocol with simulated annealing and radial basis function (RBF) neural networks, 
Mohammadnezhad and Ghaffari (2019) developed a reliable routing algorithm using 
simulated annealing for clustering and radial basis function neural networks for cluster 
head selection, showing efficiency in terms of route discovery rate and packet delivery 
rate. Later Kheradmand et al. (2022) improved the previous method’s performance 
using Harris Hawks Optimization (HHO). These methods, although efficient, rely on the 
specific conditions of the network and the number of generated clusters.

A particular challenge in ML-based path planning models concerns the generalization 
issue and the selection of training and test data. This challenge raises the questions of 
(1) whether the trained ML model will still work in a different environment (eg a different 
city) and (2) whether it will work if we lack training and test data. Deep reinforcement 
learning (DRL), a type of machine learning technique (Sutton and Barto 2018), has 
recently been employed in such complex sequential decision-making processes to min
imize loss and maximize the long-term gain of an intelligent agent. The choice of DRL in 
our project was natural because many real-world path planning problems require an 
incremental decision-making process, and the RL method has no dependencies on batch 
path training datasets (Zhang et al. 2021). Moreover, compared with classical path-finding 
methods (such as the Dijkstra algorithm and A� algorithm (Hart et al. 1968)) and other 
supervised machine learning methods, RL-based route planning can gain experience by 
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interacting through a memorized reward function with the training environment and 
evaluating the feedback from the training environments, eventually performing as a self- 
adjusted intelligent decision-support agent for real-world users (Bi et al. 2019). In 
Chamola et al. (2021)’s survey about machine learning in disaster management, the DRL 
method is regarded as a self-sustainable system – this unique trait makes it very promis
ing to support disaster management research.

Many researchers have been working on integrating RL techniques to navigate vehicles 
in various scenarios Walker et al. (2019), Levy et al. (2020), Sharma et al. (2021), Wang et al. 
(2021), He et al. (2022). Levy et al. (2020) used DRL to develop SafeRoute algorithms to 
help pedestrians safely navigate the city by avoiding street harassment and crime. 
However, their limited consideration of real-time changing street conditions resulted in no 
significant improvement over simple avoidance routing. Machine learning or reinforcement 
learning-based routing algorithms cannot navigate in large road networks due to scalability 
issues. They are limited by the size of the data they can process, which affects the accuracy 
and speed of the routing result (Geng et al. 2021). For example, both Tian and Jiang 
(2018) and Sharma et al. (2021) have considered using DRL to design evacuation routes for 
fire disasters in building environments, but only indoors due to scalability issues. DRL 
methods have also been applied to complex multi-task path-finding scenarios Wang et al. 
(2019, 2021). (Wang et al. 2019) and Wang et al. (2021) have proposed using multi-agent 
DRL methods to help a group of vehicles design efficient routes in complex environments. 
Other research (Shi et al. 2023) takes advantage of the traffic light to optimize the travel 
time using DRL. However, no existing studies have provided an efficient solution to handle 
large-scale, real-world flood evacuation events.

Sample efficiency is another challenge that many researchers have faced when 
designing a routing algorithm (Kakade 2003, Sohn et al. 2021). Sohn et al. (2021) 
showed that achieving good learning in Markov Decision Processes (MDPs) path plan
ning problems requires a large number of samples in RL algorithms. To address this, 
Pathak et al. (2017) and Seo et al. (2021) proposed using external neural network 
encoders to embed the environment features as intrinsic rewards to optimize the 
training procedures of an RL agent. Recent researchers (Christiano et al. 2017, Kumar 
et al. 2021) have found that integrating the behavioral cloning method (Schaal 1999) 
in RL training can improve the policy’s performance. In a recent study on human-cen
tered RL, Li et al. (2019a) demonstrated the importance of using human feedback in 
DRL, which can improve applicability to real-life problems.

In aggregate, Table 1 below summarizes the key characteristics of several routing 
algorithms that are used in real-world cases. According to the comprehensive survey 
about the routing algorithm by Tyagi et al. (2022), we included the environment set
tings, algorithm type, completeness, and limitations as comparison attributes. The 
environment setting can be either VANETs, or static, where the road network is pre- 
defined and unchanging, or dynamic, where the road network can change in real- 
time. The algorithm setting can include traditional methods like Dijkstra’s algorithm, 
GIS-based methods, robust mobile routing, greedy methods, and ML methods such as 
supervised neural networks (NN), simulated annealing (SA), and deep reinforcement 
learning (DRL). The completeness of the algorithm refers to whether it provides an 
exact solution or a heuristic (approximate) solution.
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3. Data collection and processing

This study can be applied to any transportation network in urban or rural areas. Point 
data with longitude and latitude can be used to represent the Points of Interest (POI) 
that a user wants to avoid. In our experiment, we used transportation network data 
collected from New York City and Houston. For the New York City case study, we used 
New York City 311 data as the POI data, and for the Houston case study, we used 
gauge data as the POI data.

For the transportation data, the original map information was collected from 
OpenStreetMap, a free collaborative world map (Bennett 2010). In our experiments 
(Section 5), we chose to export map information for the downtown areas of 
Houston and New York City. We used the Houston road network to demonstrate 
the algorithm’s performance, and then used the New York City road network to 
show that our algorithm can also be applied to other cities in the US with differ
ent types of POI data to demonstrate the scalability and flexibility of our algorithm. 
We first converted the routing map (street network data) into graph-based data 
using the methods introduced in Section 4.1. For each node, the route map 
contains:

1. Node id: unique ID of each node.
2. Longitude and Latitude of the node location.
3. Elevation (meter): the elevation information is collected using OpenTopography 

Krishnan et al. (2011).
4. Lowland (Boolean): the lowland attributed of node n is preprocessed using eleva

tion data:

Ln ¼
True 8EN > En

False otherwise

�

(1) 

where EN denotes as elevation set of neighbors of node n, En denotes as elevation of 
node n.

Table 1. Comparison of real-world routing algorithms.
Reference E. Algorithms C. Comment

Liu et al. (2006) S� Dijkstra E Inflexible to changes
Zhang et al. (2016) S� GIS-based H Limited in real-time route updating
Delling et al. (2012) D� Robust Mobile H Limited connectivity
Mohammadnezhad and Ghaffari (2019) V� SA & NN H Rely on existing condition
Mirahadi and McCabe (2021) D� Dijkstra E Single objective, deterministic
(Chen et al. 2014) S� Greedy H Inflexible to changes
Lee et al. (2020) S� Supervised NN H Generalization issue
Li et al. (2021a) D� Cellular Automata-based H Limited accuracy
Levy et al. (2020) D� DRL (SafeRoute) H Limited real-time updates
Sharma et al. (2021) S� DRL on q-matrix H Limited to indoor environments
Wang et al. (2021) D� Multi-agent DRL H Limited to small-scale scenarios
He et al. (2022) D� DRL H Navigation Comparison
Shi et al. (2023) S� Adaptive DRL H Limited to small-scale network

E.: Environment; S�: Static; D�: Dynamic; V�: VANETs; C.: Completeness; E: Exact; H: Heuristic.
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Each edge contains the following information:

1. Edge id: unique ID of the edge.
2. Node ids: The ID pair of nodes that connect the edge.
3. Preset attributes: show the preset open street map attributes, including the num

ber of lanes, highway type (eg tertiary, secondary, etc,.), one-way (Boolean), bridge 
(Boolean), road length (meter), speed limits (kmph), average speed (kmph).

4. Grade (−90 � 90): show the slope of the road, calculated by the elevation of 
nodes; usually less than 30.

5. Bearing (0 � 360): show the bearing direction of the road, calculated by the 
Longitude and Latitude of nodes (e.g. 0 represents north and 90 represents east).

When examining graph theory, a graph can be depicted by an adjacency matrix. 
This matrix showcases the segments of the graph, with indicators such as 0, 1 that 
demonstrate whether a particular edge connects to the node or not. However, map
ping a real-world map into an adjacency matrix poses significant difficulties due to 
the intricate attribute information that the map holds. This information includes street 
type, street speed limit, elevation, and grade. To manage and update this data, we 
utilize NetworkX (Hagberg et al. 2008, Rossi and Ahmed 2015). We also incorporate 
additional data sources, such as the BluPix application1 and the New York City 311 
data2, which is a public dataset recording non-emergency service requests in New 
York City. For the purpose of street flood analysis, we used a processed version of the 
New York City 311 data.3

4. Methodology

4.1. Preliminaries and formulation

4.1.1. Graph representation in pathfinding problem
A road network can be modeled as a directed Graph G ¼ ðV, EÞ, where V ¼
fv1, v2, :::, vng denotes a set of n vertices in graph and E ¼ fe1, e2, :::, emg denotes the 
set of roads as m edges in graph. Figure 1 illustrates the comparison between the 
real-world representation of the routing system and the graph-based routing system. 
For example, Figure 1(a) shows an example of navigating from point A to point B 
using Google map, while Figure 1(b) represents the graph-based view Herman et al. 
(2000).

4.1.2. Markov decision process (MDP)
In the RL, the routing system can model as an MDP tuple M¼ ðS,A,R, qÞ, where S
denotes as state set, A denotes s an action set, q denotes as a transition probability, 
R is a reward function and q is initial state distribution (Sutton and Barto 2018). Each 
state s contains all the information (described in Section 4.2) that the agent observed. 
The value of a policy p is denoted by

VpðsÞ ¼ Ep
X

t

ctrtjs0 ¼ s
� �

(2) 
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where r 2 R denotes a reward, and c 2 ½0, 1� denotes a discount factor, which cares 
for the rewards the agent achieved in the past, present, or future. Equation 2 aims to 
achieve the optimal policy p� which maximizes the expected return:

p� ¼ arg maxpEs�q VpðsÞ½ � (3) 

The optimal policy p� will take the best action from the action space (described in 
Section 4.2) to lead the agent to reach the goal.

4.2. Environment settings

4.2.1. States
The state s 2 S, also known as an observation, represents the agent’s current status 
on the map. In RL applications, the settings of the observation space and action space 
play an important role in the downstream task of RL. The state of an agent contains 
the current node and target node, which allows the agent to recognize that state and 
take appropriate action to reach the goal. If the agent observes the current node at a 
later training time with a target node in the opposite direction from before, the agent 
may take the opposite action to correct the direction. Furthermore, in the early train
ing stage, the agent tends to be more curious, meaning the agent will try to explore 
more unseen states by taking as many unknown actions as possible, especially in a 
large environment (eg the Houston metro area). In our model, the states include two 
parts: graph observation and flooding observation.

In a flood scenario, the agent can get an overview of flood depth information from 
our graph environment. Additionally, the raw flooding information only contains 

Figure 1. A demonstration of a real-world road map and graph road network.
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longitude, latitude, and flood depth (inches). Therefore, we need to convert the flood
ing information to distance with uniform measures (meters). Given two nodes (the cur
rent node k and the flooded node /), distance is calculated using Equation (20)
(Appendix A). Figure 2(a) shows where flooded points are located in a road network. 
With fixed latitude and longitude information, the agent can obtain an overview of 
flooding formation directly from the graph. However, using latitude and longitude 
coordinates to represent the flooded point does not give the agent any direct infor
mation (Levy et al. 2020). It is challenging to store all reported floods in our observa
tion. Thus, to use the node attribute to represent flooding information in graph 
observation, we used the graph embedding method (generated by node2vec (Grover 
and Leskovec 2016)) to embed the flooded nodes. Given a k-nearest reported stop 
sign, the flooding observation can be expressed as a 2� d0 matrix sfn ¼ ðen, ef − enÞ, 
where en denotes the node embedding of the current node, and ef denotes the sum 
of the embedding representation of all reported flooded points. In the real-world 
experiment, our environment setting becomes more complicated to optimize the 

Figure 2. A comparison of different action designs in RL navigation research. The yellow nodes are 
the start and target points, and the blue node is a flooded point. This sub-graph is sampled near 
(29.7685519,-95.3772329) in Houston downtown.
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simulation of real-world dynamic flooding events. So we involve a new mechanism 
called ‘evolving’ to simulate dynamic flooding (described in Section 5).

4.2.2. Actions
Actions in the environment represent moving from one street node to another. An 
agent performs an action to receive an updated state to observe the environment and 
prepare for the next action. An evacuation agent’s action depends on its state and 
then determines its behavior. Figure 2(a) demonstrates how an agent takes action dur
ing training. The agent has three discrete actions (shown as green arrows) in one 
state. Through a policy network, the policy will eventually converge to an optimal pol
icy that will take the best action to lead the agent to reach the target node. In our 
environment, the action space is discrete, which follows the human decision-making 
process in wayfinding, such as ‘Turn left,’ ‘Proceed,’ and ‘Turn right.’ However, not all 
nodes are located at the intersection with four sides. Some nodes are fork roads, and 
some nodes are highway exits with two sides. Therefore, the action needs to be 
masked (described in Section 4.3.2). In our study, the action was formatted as a car
dinal number in the training step.

4.2.3. Reward function
The reward function evaluates the action of the agent in each state. In a policy net
work, the task of the agent is to maximize the reward function. The reward measures 
whether the agent reaches the target node or whether the agent falls into a flooded 
situation. In our environment, the agent optimizes various preferences so the reward 
function must be designed with several factors. Since the main goal of our evacuation 
routing problem is to reach the destination safely, we embed the safety factor into 
the reward as a function of distance from the current node to the closest flooded 
points. A list of the reported flooded depth is traversed and updated for each step 
during the training step. In the urban area, flows greater than 9 cm depth and 1.5– 
2 m/s velocity can generate a loss of stability for subjects weighing 50–60 kg (Russo 
et al. 2013) and the effect evacuation time is 10 min (Vicario et al. 2020). Even though 
our evacuation plan is designed for vehicle routing, the safety of passengers is equally 
important and needs to take into consideration. We assumed the flooded depth of 
over 9 cm is a dangerous flooding node and the velocity of flooding is constant at 
1 m/s. Then, the reward for the flooding factor can be expressed as follows:

rflood ¼ � minð0, max C, log2
df

T

� �

Þ, rflood 2 C, 0½ � (4) 

where C 2 ½−1, 0� is an adjustable parameter in the environment setting to limit the 
negative reward of the flooding factor, df is the closest distance between the current 
node to a dangerous flooding node and T denotes an effect evacuation distance. In 
Equation (4), we use a logarithm function to control drops in the reward curve during 
training. Through this process, the agent can learn to leverage the penalty and take a 
faster road when the distance between the current position and the closest flooded 
point is acceptable. In addition to the flooding factor, the final goal of reaching the 
destination also needs to be added to the reward function. Considering the AI safety 
issue that agents should not try to introduce or exploit the reward function to get 
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more reward (Leike et al. 2017), the goal reward should be simple and effective 
(Chevalier-Boisvert et al. 2018, Sutton and Barto 2018, Levy et al. 2020). Note that the 
reward function of the flooding factor will also not generate any positive reward to 
the agent to avoid reward abuse. Thus, our reward is simply set as:

R ¼
1þ rflood if current node ¼¼ target node
rflood otherwise

�

(5) 

Using a simple reward function in RL routing methods for evacuation scenarios can 
result in sparse reward environments, where most of the reward signals are equal to 
or less than 0.0. Sparse reward environments can pose challenges for RL algorithms as 
they may lead to slow learning or difficulty in finding optimal policies due to the lack 
of informative feedback. In such an environment, agents have to navigate (and change 
the underlying state of the environment) over long periods of time, without receiving 
much (or any) feedback (Pathak et al. 2017, Moritz et al. 2018). Section 4.3.3 shows the 
methods for dealing with sparse rewards in our RL flooding evacuation model.

4.3. Flood evacuation model using reinforcement learning

This section introduces detailed information about the optimization process and adap
tation methods. We applied our graph-based RL algorithm to a large-scale road net
work to support risk-informed decision-making. In our study, agents explored the 
study area with a flooding event in four stages.

4.3.1. Policy network
MDPs are the bases for an RL framework that can underlay the unknown state prob
ability distribution and transition probability to get an optimal policy p� to decide 
which road should go. Several methods have been discovered to find the optimized 
p� (Watkins and Dayan 1992, Schulman et al. 2017). Recently, the policy-gradient 
method has shown state-of-the-art improvements toward graph RL research and navi
gation tasks (Schulman et al. 2017, Bøhn et al. 2019, Silva et al. 2020). In policy gradi
ent methods, build upon an estimator of policy gradient and plug it into a stochastic 
gradient ascent algorithm that adjusts the weights of the policy towards the maximum 
rewards. The most common gradient estimator ĝ is given by:

Âtðst , atÞ ¼ Qðst , atÞ − V̂ ðstÞ (6a) 

ĝ ¼ Êt rh log ph
ðatjstÞÂt

h i

(6b) 

where ph denotes stochastic policy, Ât is the estimator of the advantage function at 
time step t, a is action follows at � pðatjstÞ and s is state follows st þ 1 � Pðt þ 1jst , atÞ

for t � 0: In this case, the expectation Êt is the empirical average over a finite trajec
tory s of our environment samples. Here we define the trajectory s as a sequence of 
state, action, and rewards:

s ¼ fðs0, a0, r0Þ, ðs1, a1, r1Þ, :::g (7) 

Qðst , atÞ and V̂ ðstÞ in Equation (6a) are state-action value function derived from equa
tion (2) via MDP in the trajectory. This can be intuitively taken as the difference of Q 
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value (future discounted rewards) and the average of action which it would have 
taken at state. It shows the extra reward that an agent could obtain by taking a turn 
in an intersection. Since ĝ is a gradient estimator like other estimators in deep learn
ing models, it is obtained by an objective function (or loss function) that differentiates 
the objective:

LPGðhÞ ¼ Êt log ph
ðatjstÞÂt

h i

(8) 

where h is the policy parameter. This policy gradient optimization makes RL frame
works more like general optimization problems where the deep learning training 
method is applicable. Then training method involves an objective to minimize the loss 
function, where the parameterized approximator can be established. Conversely, 
reinforcement learning consists of an unknown and non-differentiable dynamic model, 
which causes the increased variance of the gradient estimator. Considering these limi
tations, we use Proximal Policy Optimization (PPO) (Schulman et al. 2017) to optimize 
the policy. In PPO methods, the objective function is expressed as follows:

LCLIPðhÞ ¼ Êt minðrtðhÞÂt , clipðrtðhÞ, 1 − �, 1þ �ÞÂtÞ
� �

, (9) 

where rtðhÞ ¼
phðat, stÞ

phold
ðat , stÞ

is the ratio of the probability under the new and old policies 
and � is a tunable hyper-parameter (generally 0.1 or 0.2). The clip term clipðrtðhÞ, 1 − 
�, 1þ �ÞÂt in equation 9 modifies a surrogate objective function (Schulman et al. 2015) 
by clipping the probability ratio, where the minimum of the clipped and unclipped 
objective is taken and the final objective is a lower bound on the unclipped objective 
(Schulman et al. 2017). In the experiment Section 5, the agent adapted a well-estab
lished learnable estimator, so a tuned neural network will be introduced in the next 
step to train the evacuation model.

4.3.2. Action mask
As stated in the previous Section 4.2, the existing flood evacuation algorithms lack the 
capability of dealing with complex environments. For example, Sharma et al. (2021) 
uses nodes in observation as action to train an agent to plan an evacuation route in a 
fire situation. It requires the agent to first learn to memorize the neighborhood nodes 
and choose a valid action via Q-learning (shown in Figure 2(b)). Figure 2(c) also shows 
an example of action space without an active mask. Once the observation extends to 
a large number of nodes (eg over a thousand nodes), the Q-learning method will be 
extremely hard to converge (Low et al. 2019). In contrast, Figure 2(d) demonstrates 
how the action mask works in our flooding evacuation model, and only valid action is 
presented to the policy. To remove the invalid actions and adapt the policy network 
to our environment, we designed an action mask method to avoid invalid actions 
affecting our policy network, which masks all invalid actions in each state. To incorpor
ate the change in action, the policy network in Section 4.3.1. needs the following 
modifications:

1. The trajectory s in Equation (7) only use valid actions
2. Only valid actions are calculated in Equation (6b) during the gradient descent.
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The policy network first outputs logits (also known as scores without normalization 
in the neural network) and then converts them into an action probability with an acti
vation function. In this case, the MDP is an action set with three directions A ¼
fa0, a1, a2g denoted as turn left, proceed, and turn right respectively. The decision to 
limit the action space to these three options was made based on a comprehensive 
statistic of real-world road networks Appendix D. Our studies showed that intersec
tions requiring more than these three actions, such as 5-way intersections or situations 
necessitating a U-turn, constitute a minor percentage of the total intersections in 
major cities. Moreover, expanding the action space to include these additional actions 
would significantly increase the complexity of the model. Further, consider a policy ph 

in Equation (6b) parameterized by h ¼ ½l0, l1, l2� ¼ ½1:0, 1:0, 1:0�: Assume we directly use 
h as the output logits for easier representation. Then in an initial state s0 that an agent 
in a start node, we have:

phð�js0Þ ¼ phða0js0Þ, phða1js1Þ, phða2js2Þ½ � ¼ activationð l0, l1, l2½ �Þ

phðaijs0Þ ¼
exp ðliÞ

P
j exp ðljÞ

(10) 

Assume a0 is invalid for state s0, the re-normalized probability distribution p0hð�js0Þ

will be calculated by an activation function (eg softmax) as ½0:5, 0:00, 0:5�: Thus when 
an agent traverses a road network, every time an agent makes a decision at an inter
section, only a valid turn will be chosen by the policy network.

4.3.3. Exploration
In reinforcement learning, ‘agent exploration’ plays an important role in the training 
process. The existing literature indicated that agents in reinforcement learning algo
rithms suffer from sparse reward issues (Savinov et al. 2018). For example, the agent 
cannot receive a reward until it arrives at a destination in a disaster event. One solu
tion to this problem is to design an intrinsic reward by the agent itself, following steps 
such as observing, memorizing, and recalling (Savinov et al. 2018). Let the intrinsic 
reward generated by the agent at time t be ri

t , the original reward be re
t and the 

trade-off parameter between the exploration and exploitation be b. The optimized 
reward can be:

rt ¼ ri
t þ b � re

t (11) 

In this way, a new objective of an agent can be developed by maximizing the sum 
of these two rewards. Pathak et al. (2017) used self-supervised representation learning 
to encode the observation feature for exploration. Conversely, Seo et al. (2021) encour
ages exploration without introducing representation learning but utilizes a k-nearest 
neighbor state entropy estimator in a randomly initialized encoder. In our policy net
work, we adapt these two intrinsic reward methods to our agents.

1. Reward by auto-encoder representation learning: The auto-encoder representa
tion learning follows the idea of Pathak et al. (2017). Given a raw observation st, 
an auto-encoder neural network (Lange and Riedmiller 2010) is used to encode it 
to a feature vector /, where the feature vector stores the information of the road 
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situation (eg the distance between the goal node and current node). The auto- 
encoder consists of two modules: encoder and decoder (also called inverse model 
and forward model). The predicted action ât from action at taken by the agent 
from the state st can defined as:

ât ¼ geð/ðst , heÞ, /ðstþ1, heÞ; hiÞ (12) 

where hi and he are the learnable parameters in the encoder neural network ge and 
are trained to optimize the minimal discrepancy between the original action and pre
dicted action. In the decoder gd, the at and /ðst , heÞ can be used to predict feature 
encoding of the stþ1 :

/̂ðstþ1Þ ¼ fð/ðst , heÞ, at; hf Þ (13) 

where f is the function that is trained to optimize the regression loss between the pre
dicted estimate of /̂ðstþ1Þ and the actual /ðstþ1Þ and finally, the intrinsic reward is 
computed as:

ri
t ¼ jj/̂ðstþ1Þ − /ðstþ1Þjj

2
2, g > 0 (14) 

In the section of experiment 5, we introduce our tuned auto-encoder network for 
intrinsic reward agents.

1. Reward by random-encoder: The random-encoder (Seo et al. 2021) is based on a 
k-nearest neighbor entropy estimator (Singh et al. 2003). The random encoder is 
based on a state entropy, which is calculated based on its distance from k-nearest 
neighbor states present in the replay buffer in the representation space. Let X �
Rq be a random variable with a probability function p. The random-encoder starts 
by using the differential entropy (Michalowicz et al. 2013) to create a high-dimen
sional feature space (or representation space) to monitor the observation of a 
moving agent. The high-dimensional space can be represented as HðXÞ ¼
−Ex�pðxÞ½log pðxÞ�: Since our observation of road network in low dimensional, we 
employed particle-based k-nearest neighbors (k-NN) as training samplers for X as 
follows:

Ĥ
k
N ¼

1
N

XN

i¼1

log jjxi − xk−NN
i jj2 (15) 

where xk−NN
i denotes the k-NN of xi within a set fxig

N
i¼1 (Seo et al. 2021). The difference 

between the states in the low-dimensional feature space of a randomly initialized 
encoder can be calculated using the distance measure. By utilizing Equation (15), we 
can treats each transition as a particle (Liu and Abbeel 2021), the intrinsic reward of 
the random-encoder can be expressed as:

re
t ¼ log ðjjyi − yk−NN

i jj2 þ 1Þ (16) 

where yi is a fixed representation outputs from a random-encoder and yk−NN
i is the k- 
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nearest neighbors of yi. Measuring the difference between states in the feature space 
can enable a more stable intrinsic reward as the pair of states does not change during 
training (Seo et al. 2021). The comparison of those two explorations is present in 
Section 5.

4.3.4. Scaling optimization
Navigating large road networks often leads to sparse rewards, making it challenging 
for agents to reach their goals. The design of scaling optimization assists the agent in 
demonstrating robustness in real-world applications (Li et al. 2019a). Researchers, 
inspired by human imitation behavior, employ imitation learning (IL) (Schaal 1999) to 
learn from historical trajectories to construct an agent. This approach circumvents the 
need to learn from sparse rewards or manually specify a reward function. The resulting 
agent can be designed for higher horizons or multi-task goals in industry applications 
(Magzhan and Jani 2013).

In this section, we present a scaling optimization design that imitates expert deci
sions to support agent navigation in a road network comprising over 80k nodes. The 
behavior cloning optimization trains an agent using a sequence of decisions from 
human experts ŝ i 2 fŝ1, ŝ2, :::, ŝmg, wherein each decision comprises expert trajectories 
as follows:

ŝ i ¼< ðs
i
1, ai

1Þ, ðs
i
2, ai

2Þ, ::: > (17) 

For each trajectory s in the dataset ŝ, the scaling optimization estimates the advan
tage function Â

p
ðst , atÞ ¼ ðRt − VhðstÞÞ=c for time t ¼ 1, :::, t: This function measures the 

relative quality of an action at a given state compared to the average action at that 
state under the policy. Here, VhðstÞ represents the value function discussed in Section 
4.1, and Rt represents the modified reward function Rt ¼ a � ri

t þ b � re
t þ v log ðjjzt − 

ze
t jj2 þ 1Þ, where z is a path representation containing a sequence of node ids at time

stamp t. The term ze
i denotes an expert path decision. In the experiment settings 

(Section 5), we utilized a random sampling method to summarize the path feature 
and the path dimension was adjusted according to statistical results. We used the 
implementation of the monotonic advantage reweighted imitation learning (Wang 
et al. 2018) method in Ray Rllib (Liang et al. 2017) for behavior cloning optimization 
by maximizing the following estimation with hyperparameter b:

Eðst , atÞ2ŝ exp ðbÂ
p
ðst , atÞÞ log phðatjstÞ (18) 

In traditional pathfinding problems, the shortest path can be approximated using 
greedy or heuristic algorithms. For our experiment, we utilized a trajectory generated 
by a multicriteria decision-making routing algorithm under flood emergency condi
tions (Alizadeh et al. 2022) that we had previously collected. When the environment 
becomes static—ie the flood ceases to evolve and avoidance areas are no longer a 
concern—the routing algorithm simplifies to a general shortest path finding the prob
lem. In such circumstances, the decisions made by these algorithms can be considered 
expert decisions.
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5. Experiments and results

5.1. Flooding environments

We can obtain flooding information in urban areas using various information sources. 
Using the lowland attribute we added in Section 3, if the weather of the flooding 
environment is rainfall or the statistic precipitation level is high, we claimed that the 
lowland intersections have a higher chance of being potential flooded points accord
ing to the existing flooding information. In a real-world environment, flooding condi
tions in urban areas are more uncertain due to weather factors. Thus, we added the 
‘evolving’ mechanism to simulate this situation. The ‘evolving’ setting can be config
ured as a parameter of the flooding environment. If the ‘evolving’ setting is enabled, 
we will randomly choose many intersections labeled with lowland (excluding the ori
gin point and goal point) as new flooding points with average flooded depth. For 
example, if the ‘evolving’ is configured as 10, a new flooded point will generate every 
10 steps in an episode. In the next episode, the environment will also be reset to 
clean up all generated flooded points and keep only stop signs and gauge flooding 
information.

5.2. Experiments and training

Our research was demonstrated in two distinct study areas: Houston and New York 
City. In the case of Houston, flood data was sourced from the period of Hurricane 
Harvey (August 17, 2017 to September 3, 2017). The New York City environment was 
selected to demonstrate the scalability of our algorithm. Comprehensive information 
regarding our experiments is provided in Appendix B. Figure 3 illustrates the workflow 
of how our policy neural network interacts with the flooding environment. Within the 
policy neural network, we utilize an exploration encoder, comprising a representation 
encoder and a random encoder, to aid agents in identifying the destination point 

Figure 3. A demonstration of our policy neural network interacts with a flooding environment. 
The expected reward is integrated with intrinsic reward, extrinsic reward, and a scaling 
optimization.
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within a road network. The observation space, depicted on the left side, consists of 
various types of information, including neighborhood graph embedding, flooding 
graph embedding, target node, current node, path information, and action mask. The 

Figure 4. A demonstration of reinforcement learning simulation process.

Figure 5. A comparison of results of different optimization methods in our experiments. The y-axis 
is returned episode reward and returned episode length and the x-axis is the training steps. Here 
we use an exponentially weighted moving average with 500 window size to smooth the line chart 
for better visualization. The smoothed line chart is marked with the prefix ‘MA-’. The ‘RE’ is the 
experiment of the random-encoder method. The ‘AE’ is the experiment of the auto-encoder repre
sentation learning method. The ‘VAN’ is the vanilla version of proximal policy optimization. The ‘SC’ 
is the scaling optimization method.
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action design, detailed in Section 4.3.2, is characterized by three directional move
ments: right (R), left (L), and forward (F). The reinforcement learning simulation process 
is depicted in Figure 4. In our configuration, the graph functions as the environment, 
with the simulation process running continuously until convergence of the policy net
work is achieved. The graph environment provides a reward as feedback to the policy 
network for parameter optimization, based on the actions taken by the agent. The 
simulation episode concludes when the agent reaches the destination point or 
exceeds the maximum horizon (episode length), at which point the environment 
returns a terminal signal. As demonstrated in Figure 5, the overall simulation com
prises approximately 2 million episodes, with each episode containing around 100 
steps. This robust simulation process ensures a comprehensive exploration of the 
environment and the effectiveness of our policy network.

In the training step, we followed the definition of the path finding algorithm (Hart 
et al. 1968), so an agent starts from an arbitrary node and moves along the edge 
between nodes as a path until it reaches the destination node. Since the hyper-param
eter tuning for different models varies from experiment to experiment, we used ‘Tune’ 
(Liaw et al. 2018) to adjust the neural network structure and all other configurations. 
For example, in the Houston experiment, the tuned neural network structure for a ran
dom-encoder method is 256� 256� 256 fully-connected hidden layers with ‘RELU’ 
activation functions (Agarap 2018). In the experiment of the auto-encoder method, 
the inverse model and forward model were both set to 256� 256 and the hidden 
layers were tuned to 256� 256� 256 with ‘RELU’ activation functions. The PPO policy 
network was tuned with 128 full-connected hidden layer for action masking with fully- 
connected hidden layers with a dimension of 256� 512� 256: The learning rate for 
small and large environments was set to 0.0003 and 0.0005, respectively. In general, 
the tunable reward factors a and b can be set to 0.5. As mentioned in the literature 
(Pathak et al. 2017), the reward factor can also be optimized by linear or exponential 

Figure 6. A demonstration of our policy neural network interacting with flooding environment.
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decaying function. During the large experiment training, we increased the weights of 
v up to 0.5 following a linear space to help the agent follow the scaling optimization 
(Figure 6 shows the result of evacuation routing in a large flooding environment with 
0.5 weighted scaling optimizations). We reset the environment in every training epoch 
to randomly sample a different node pair as the start node and destination node for 
generalization purposes. At the beginning of the training (for the first 100 epochs), we 
manually control the distance between the start node and destination node to let the 
agent learn the reference route faster (Goecks et al. 2019). Besides, we developed a 
data loader to process multi-dimensional data collected from each observation. In the 
data loader, the observations are flattened, and the different states in observation are 
flattened as 1� N dimensions. We developed a high-performance geospatial cyberin
frastructure to optimize computational efficiency (Li and Zhang (2021)). For example, 
we used a Ray cluster (Liang et al. 2017) with three nodes to balance the workload of 
RL training. Figure 7 illustrates the general framework of the geospatial cyberinfras
tructure used in this project. We used four nodes to balance the workloads for train
ing, and each node has a 64-core CPU with an NVIDIA Ampere A30 Tensor Core GPU 
to accelerate computing. The master node and control node control all computing 
resources in our cluster and maintain the weights of the policy network. Each worker 
node is a replica set of training units, and it clones the flooding environment to per
form distributed training.

5.3. Evaluation and results

We evaluated our model in several experiments. Because our task is focused on safety 
evacuation paths during the flooding event, the quality of the paths is measured using 
a safety metric that can be expressed as below:

Figure 7. A illustration of using high-performance cyberinfrastructure architecture to implement 
the reinforcement learning routing algorithms. We used four nodes to balance the workloads for 
training and each node has a 64-core CPU with an NVIDIA Ampere A30 Tensor Core GPU to accel
erate the computing.

202 D. LI ET AL.



Safety ¼

Pn
i¼0minðdistði,FÞÞ

n
(19) 

where n is the number of nodes along the path, i is the index of the nodes, and func
tion dist calculates the closest distance between the current node i and the flooded 
node-set F : Figure 8 illustrates our recorded results from 16,000 route samplings. The 
blue line depicts the safety test results obtained using a traditional Dijkstra routing 
algorithm, while the red line represents the results from the scaling optimization. Both 
‘MA-’ lines have been smoothed using an exponentially weighted moving average 
with a window of 1000 for clearer visualization. In a real flood event, a distance drop
ping to zero signifies a vehicle being inundated. The experimental results indicate that 
the traditional evacuation routing algorithm more frequently traverses flooded points, 
thereby potentially compromising passenger safety. Although our model occasionally 
approaches flooded points (eg around the 14,000th sample), it predominantly main
tains an evacuation route that is safely distanced from flooding. This proximity to 
flood points is a result of the model balancing the effects of the reward discount (c) 
and the safety factor. Importantly, our method does not directly traverse flooded 
points, suggesting that it surpasses traditional algorithms in terms of safety evaluation.

Figure 8. A demonstration of routing evaluation on random sampled Houston environment in 
16,000 times. The red line is the smoothed moving-average using our method and the blue line is 
the smoothed moving-average using traditional method. The y-axis is the distance (meters) to the 
closest flooded point and the x-axis is the number of sampled routes.
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In reinforcement learning, the model’s performance is evaluated using various met
rics, including the episode reward and the episode length. The episode reward, com
prising a sequence of states, actions, and rewards ending with a terminal state, 
reflects the model’s ability to accumulate rewards within a specific environment and 
RL setting. Meanwhile, the episode length, indicating the number of actions an agent 
takes in an episode, can shed light on the agent’s exploration capabilities and strategy 
utilization.

In our study, the episode length also represents the number of interactions the 
agent has with the environment. We employed distributed training techniques, scaling 
up to 4000 replications per iteration across three working nodes. We recorded the epi
sode rewards and episode length after 400,000 trained environments for a small set of 
environments and after 1,600,000 trained environments for a larger set, using these as 
evaluation metrics.

Figure 5 presents the evaluation results across different training environments, with 
the y-axis indicating returned episode reward and length, and the x-axis representing 
training steps. An exponentially weighted moving average was used to smooth the 
line chart for enhanced visualization. Figure 5(a) demonstrates the training evaluation 
on Houston’s small size map (a rendered demonstration can be found at 1). The 
detailed evaluation score is also listed in Appendix C. The results indicate that 
reinforcement learning models with extrinsic reward augments outperform the vanilla 
version of proximal policy optimization in terms of episode rewards. The auto-encoder 
optimization had a slower convergence than the random-encoder. However, the auto- 
encoder representation method had a better final performance at the conclusion of 
the training because the random-encoder takes a different exploration strategy during 
the training. Figure 5(b) shows the episode length evaluation of the random-encoder 
is much higher than the auto-encoder method. This means the random-encoder rec
ommends an evacuation route with more detours to avoid flooded areas, thereby pro
viding a relatively bad consideration of the ‘shortest’ factor.

Therefore, we used the auto-encoder proximal policy optimization (PPO) model as our 
base model to generate optimal evacuation routes. To better analyze the actions taken by 
different optimization methods, we sampled those actions in a small test environment 
(Figure 9(a)). When an agent takes an action during training (green arrows are the three 
available actions that the agent can choose), we record each action and plot its distribution. 
Figure 9(b) shows the comparison of the auto-encoder representation method and the ran
dom-encoder method. We found out that the red dot (random-encoder) did not show good 
convergence for action 3 (Figure 9(b)) in the later training process, which means that the ran
dom-encoder had a much longer exploration period. This is also in line with the previously 
mentioned longer episode length in the evaluation of the random encoder. Based on the 
auto-encoder, we added scaling optimization for large environment training. Figure 5(c)
shows the scaling optimization (green line) with the behavior cloning method to plan the 
evacuation route in a large city road network. The results show that PPO methods with auto- 
encoder optimization can only produce good results when the agent is far away from the 
submerged point and barely able to reach the destination point. Figure 5(d) also shows that 
the episode length of the scaling optimization method remains within a reasonable range.
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In Figure 5, the episode curves for the large and small Houston maps differ signifi
cantly. This divergence is primarily attributed to the exploration-exploitation trade-off 
and environmental non-stationarity. Initially, the agent’s exploration strategy identifies 
rewarding action sequences, leading to an episode reward and length surge. However, 
as the agent refines its policy amidst continued exploration, temporary setbacks may 
occur, explaining the subsequent reward and length drop. This phenomenon is par
ticularly pronounced in large, complex environments where simplistic models may 
struggle to capture the full environmental complexity, resulting in suboptimal per
formance. The non-stationarity of the environment, as detailed in Section 5.1, also 
plays a crucial role. Our model’s evolving mechanism, simulating urban flooding’s 
uncertain nature, introduces new flooding points during episodes in large road net
works, increasing environmental complexity and unpredictability. This contrasts with 
small road networks, where shorter episode horizons limit the evolving mechanism’s 
impact. On the small road network, the agent rapidly learns an optimal policy due to 
the environment’s relative simplicity and stability. Conversely, on the large road net
work, the agent requires more time to adapt to the complexity and variability intro
duced by the evolving mechanism, explaining the initial reward and length increase, 
subsequent drop, and ultimate convergence.

We conducted simulations to investigate how our policy neural network interacted 
with the flooding environment using data collected during the Hurricane Harvey 
period from August 17, 2017, to September 3, 2017. The results of this simulation are 
presented in Figure 6. In the presence of changing flood conditions, the map informa
tion in traditional navigation software becomes distorted. However, our agent can 
improve the reference path even without this information by combining street infor
mation within the near-visible range and external flood information to develop an 
optimized evacuation route. Our approach generated an evacuation route for both the 
training environment (Figure 6(a)) and OpenStreetMap (Figure 6(b)). The outcomes 

Figure 9. The exploration and exploitation comparison of auto-encoder representation learning 
method (AE) and random-encoder method (RE). In this small environment (shown in the left fig
ure), the best action is ‘turn right’, which is numbered action ‘3’.
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indicate that our approach can efficiently plan a secure route during a flood event 
with limited information on the actual road network.

Our proposed framework worked well using various datasets. For example, Wu 
(2021) used New York City 311 data (NYCOpenData 2022) to create a near-real-time 
flooding map to help people understand the impact of Hurricane Ida. Figure 10(a)
shows the flooding map in New York City created by New York City 311 data. Simply 
replace the flooding dataset with the previously mentioned (Section 3) data format, 
and we train and run our model into a different environment. The results of using 
New York City 311 data instead of the BluPix dataset to test the adaptability of our 
proposed framework are thus plotted in Figure 10(b). Our model still works well in a 
new environment using different data sources.

6. Discussion

The reinforcement learning method estimates each state-action value to optimize dis
aster evacuation strategies. More route strategies and spatial patterns can be found 
and investigated by choosing different reward factors instead of the proposed opti
mization techniques. For example, we can use road type attributes as a reward factor 
to change the road preference for the evacuation agent. Figure 11(a) shows the regu
lar evacuation plan in a small environment without road type preferences. By reward
ing the route with a road type r½road� ¼

Lp

L (eg LP denotes ’primary’ road type and L 

Figure 10. An illustration of using New York City 311 data to build a flooding environment for 
testing our reinforcement learning routing algorithm. (a) 311 calls made during the week following 
Hurricane Ida (blue) and the week following Hurricane Henri (red) from Wu (2021). (b) The results 
of using New York City 311 data to test the adaptability of our proposed framework. The yellow 
dot and green dot represent starting point and destination point, respectively.
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denotes the total length from start point to destination), the agent will choose a dif
ferent route to complete the task (shown in Figure 11(b)).

Compared with other heuristic algorithms, reinforcement learning shows good 
adaptability so developers can easily add multiple tasks without redesigning the policy 
optimization method (Cai et al. 2019). For example, emergency managers often need 
to add stops during evacuation planning (eg picking up their child from school). By 
adding a bonus point in the road network that returns an extra reward to the agent, 
we can fine-tune the model to plan a multi-stop route in a dynamic environment 
(shown in Figure 11(c)).

As shown in Figure 8, our method is not significantly affected when attempting to 
create a ’safe’ route versus a ’short’ route. The reinforcement learning model seeks to 
make an informative decision that leverages the different conditions to create a better 
route. However, a ‘do not get flooded’ bottom line still restricts the agent’s behavior. 
This restriction is beneficial for developers and users to understand its strict character
istics for future development and usage.

7. Future works

Although our analytical experiments demonstrate good results in route planning, testing 
on real flooding events is needed to validate our algorithms. Future research will focus 
on a field experiment with actual weather and road conditions to put the theoretical 
work into practice. This will also provide an opportunity to test the potential inclusion of 
more complex actions in the action space, thus further enhancing the practicality and 
versatility of our model. Extending this approach to broader impacts, our RL routing algo
rithm can also be adapted for future self-driving systems and even exoplanet rovers. 
Given the similarities of disaster events, exoplanet rovers also lack external guidance. 
With limited online information (GPS or other satellite imagery), the reinforcement learn
ing agents can be trained to navigate the rover to its destination.

Moreover, the inherent flexibility of reinforcement learning provides the possibility 
of incorporating more complex actions into the action space, including 5-way 

Figure 11. Reinforcement learning evacuation planning model adaptations. The yellow dots repre
sent two endpoints between a route. The blue dots represent flooding points in the environment. 
(a) Using road type ‘all’ to set road preference. (b) Using road type ‘primary’ to set road preference. 
(c) Multi-stops route planning in Houston small road network.
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intersections and U-turns. At the same time, these actions can enrich the algorithm’s 
capacity and enable the agent to navigate through more complicated road networks. 
On the other hand, these new features will increase the algorithm’s computational 
complexity in terms of convergence and exploration which should be considered in 
the implementation stage. As part of our future endeavors, we plan to explore add
itional training and optimization techniques, such as the use of a pre-trained routing 
policy (Wu et al. 2023). We anticipate that such improvements could considerably 
broaden the applicability of our model to a diverse array of road situations.

8. Conclusion

In this study, we developed an RL-based routing algorithm to help people navigate in 
urban areas during flooding events under complex, information-limited, and dynamic 
road network conditions. Our graph-based RL model, equipped with real-world action 
design and reward settings, has demonstrated practicality and feasibility in navigating 
real-world scenarios with multiple flood information sources. The key findings and 
implications of our study are:

� Our model effectively learns spatial information around flooding areas, produc
ing high-quality evacuation routes even in the face of changing road condi
tions (eg road closures caused by flooding) and limited neighborhood 
information.

� The integration of reinforcement learning into the routing algorithm represents a 
significant intellectual contribution to GIScience, enabling navigation in complex 
and dynamic large road networks.

� The practical implications of our research extend to the field of disaster manage
ment, providing safe evacuation routes during flooding events by embedding rout
ing information during the training processes.

� The versatility of our method allows for adaptation to other disaster events such as 
earthquakes or volcanic eruptions, making it a valuable tool for urban navigation.

Despite these promising results, our research has limitations, particularly regarding 
the scalability of the model to larger road networks (eg nationwide) and the need for 
training resources. Future research directions should focus on improving the model’s 
scalability and incorporating effective training methods, such as pre-training techni
ques. We believe that these improvements will further enhance the utility of our 
model in disaster management and safety planning.

Notes

1. https://blupix.geos.tamu.edu/MapPage
2. https://data.cityofnewyork.us/Social-Services/NYC-311-Data/jrb2-thup
3. https://github.com/mebauer/nyc-311-street-flooding.
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Appendix A. Distance calculation   

Distance calculation between two points in our project use great circle distance formula:

d ¼ rDr ¼ arccosð sin /1 sin /2 þ cos /1 cos /2 cos DkÞr (20) 

where k and / denote the geographical longitude and latitude of two points 1 and 2; Dr 
denote as the central angle between two points and r denote the radius of the earth.

Appendix B. Road network summary 

Appendix C. Evaluation summary 

Appendix D. Road network statistic 

Table B1. Road networks summary of Houston and New York in our experiments.
City Avg. Grade Med. Grade Interactions Edges

Houston (Small) 2.0% 1.3% 1521 4088
New York City (Small) 3.6% 2.5% 1281 2572
Houston (Large) 1.1% 0.7% 72486 182525
New York City (Large) 2.0% 1.3% 81099 205896

Table C1. Summary of evaluation scores.
Method Environment Metric. Score

Dijkstra New York City (Large) Safety 1450.23
ReinforceRouting New York City (Large) Safety 1663.01
Dijkstra Houston (Large) Safety 1798.06
ReinforceRouting Houston (Large) Safety 1963.90
Vanilla-RL Houston (Small) Reward −0.54
RE-RL Houston (Small) Reward 0.71
Vanilla-RL Houston (Small) Episode Length 20.5
RE-RL Houston (Small) Episode Length 87.7
RE-RL Houston (Large) Reward 0.12
ReinforceRouting Houston (Large) Reward 0.62
Vanilla-RL Houston (Large) Episode Length 20.5
ReinforceRouting Houston (Large) Episode Length 87.7

Table D1. Road networks statistic of top four largest cities in U.S.
City Avg. Degree Med. Degree Std. N0� N1� N2� N3� N4� N5�

New York City 2.51 3.00 0.905 0.12 15.16 29.65 42.35 12.60 0.11
Los Angeles 2.77 3.00 0.977 0.08 15.81 13.45 47.90 22.62 0.11
Chicago 2.74 3.00 0.911 0.12 11.28 23.06 45.77 19.58 0.13
Houston 2.48 3.00 0.934 0.14 17.35 30.48 38.66 13.34 0.02
�Nx means the percentage of the nodes in the road networks have x neighbors.
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