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ABSTRACT ARTICLE HISTORY
Evacuation planning and emergency routing systems are crucial Received 2 February 2023
in saving lives during disasters. Traditional emergency routing sys- Accepted 31 October 2023

tems, despite their best efforts, often struggle to accurately cap-
ture the dynamic nature of flood conditions, road closures, and
other real-time changes inherent in urban disaster logistics. This
paper introduces the ReinforceRouting model, a novel approach Geographic Information
to optimizing evacuation routes using reinforcement learning (RL). Science and Systems (GIS);
The model incorporates a unique RL environment that considers artificial intelligence;
multiple criteria, such as traffic conditions, hazardous situations, routing algorithm

and the availability of safe routes. The RL agent in this model

learns optimal actions through interaction with the environment,

receiving feedback in the form of rewards or penalties. The

ReinforceRouting model excels in executing prompt and accurate

route planning on large road networks, outperforming traditional

RL algorithms and shortest-path-based algorithms. A higher safety

score and episode reward of the model are demonstrated when

compared to these classical methods. This innovative approach to

disaster evacuation planning offers a promising avenue for

enhancing the efficiency, safety, and reliability of emergency

responses in dynamic urban environments.

KEYWORDS
Disaster evacuation;
reinforcement learning;

1. Introduction

Changes in the global climate amplify the risk of water-related disasters such as flood-
ing in urban areas. Since 1990, water-related disasters have accounted for 90% of the
1000 most severe disasters (Hendricks et al. 2022). They are the most frequent and
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expensive natural disasters nationwide, impacting millions of people’s lives and thou-
sands of communities every year. Despite the cascading impacts of these extreme
events, existing climate adaptation platforms do not fully understand the dynamics of
urban community-level response due to the lack of detailed disaster management and
efficient evacuation plans at the street level (Gharaibeh et al. 2021). Evacuation and
emergency routing systems play a critical role in saving lives and minimizing damages
during disaster events. Traditional emergency routing systems usually use remote-
sensing images and hydrology methods to simulate the movement of the flood
(Henonin et al. 2013, Feng et al. 2015) to obtain the flooding information. However,
data obtained this way may result in imprecise flood prediction results due to its fail-
ure to consider reshaped surface topography and micro-topographic variations com-
monly seen in urban environments (Jha et al. 2012, Alizadeh et al. 2021, Kharazi and
Behzadan 2021). Accurate and reliable data are crucial for the successful dispatching
of rescue teams and navigating individuals from flooded areas to safe places during
emergencies. Recent research (Cavdur et al. 2016, Yan et al. 2020) showed that the
number of deaths is highly related to the efficiency of evaluation plans and routing
during emergency events. Therefore, establishing a well-thought-out and timely evacu-
ation strategy is critical in dynamic flooding situations where lives can be at risk
(Meyer et al. 2018).

Traditional routing algorithms such as capacitated scheduling algorithm (Osman
and Ram 2013), genetic algorithm (Gomes and Straub 2017), and cellular automata-
based evacuation (Li et al. 2021a), have been used in the past for approximate
solutions in evacuation routing during flood emergencies. However, the following limi-
tations have been identified for the existing routing algorithms (Ding et al. 2021).
Firstly, traditional routing algorithms are often based on pre-defined rules or heuristics
and may not be able to adapt to real-time changes in flood conditions, road closures,
or other dynamic factors. For example, in fast-changing flood situations, the traditional
routing algorithms cannot update the routes in real-time based on the emergency
situation (Duraipandian 2019, Ding et al. 2021). Second, traditional routing algorithms
struggle with scalability issues when dealing with large-scale flood evacuations involv-
ing a large number of affected individuals, multiple evacuation routes, and varying
capacities of transportation resources. The computational complexity of these algo-
rithms may increase significantly with the size and complexity of the evacuation scen-
ario, leading to longer computation times and potential delays evacuation process.
Finally, traditional routing algorithms lack the ability to deal with diverse data sources,
such as gauge data, information from first responders (eg volunteered geographic
information such as New York City 311 data), or inputs from affected individuals. The
traditional methods rely solely on a few predefined parameters or heuristics, which
makes it hard to capture the complexity and dynamics of flood emergencies. To over-
come these limitations, innovative approaches, such as reinforcement learning techni-
ques can be used.

Recent contributions in deep reinforcement learning (RL) (Sutton and Barto 2018)
have shown unique advantages in solving conditional routing problems (Nazari et al.
2018, Levy et al. 2020). In RL frameworks, agents represent individual people or a
vehicle in a navigation environment, which are simulated to iteratively learn the
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policies to maximize the reward feedback through interacting with an environment.
This unique trait of RL makes it a natural choice for many data mining problems
requiring incremental decisions. For example, RL can learn to solve complex route
optimization problems in a dynamic environment by collecting experience, while trad-
itional algorithms focus more on static environments (Qiu et al. 2019). Traditional
methods also usually need to recalculate the route when the road network changes,
but the RL approach can incrementally adapt to an unknown environment without
retraining the entire data to reduce the computational time (Su et al. 2004).
Furthermore, when a route optimization problem becomes a complex sequential deci-
sion-making process due to unpredictable natural or artificial causes, solving those
problems by traditional algorithms also becomes extremely complex or even NP-hard
(Abe et al. 2019).

Although RL has been widely adopted in previous work for pathfinding and route
optimization (Godfrey and Powell 2002, Xiong et al. 2017, Wei et al. 2018, Kim and
Kim 2021), there are still many limitations to the current RL routing optimization
approach. For instance, using RL in large graph networks can be challenging due to
inefficient exploration strategies. Here, the RL exploration refers to the process of dis-
covering and learning from new states and actions to improve the agent’s decision-
making. Traditional RL methods may suffer from exploration issues in large graphs, as
the search space can be large, leading to long computation times and sub-optimal sol-
utions (Arora et al. 2017, Manchanda et al. 2019). Moreover, action settings in previous
graph routing environments lack consideration of practical usage in the real world.
For example, Levy et al. (2020) used compass direction (North, Northeast, East,
Southeast, South, Southwest, West, Northwest) as an action space, which ignores the
actual road network structure and causes invalid actions. For example, an agent will
keep the same direction and slightly turn left or right when the agent wants to exit
from a controlled-access highway to a freeway. Sharma et al. (2021) directly used
nodes as an action space for fire evacuation route planning, but it is not applicable in
a large network system with tens of thousands of nodes.

To address the challenges mentioned above, we developed a geospatial cyberin-
frastructure-enabled reinforcement learning algorithm to improve the routing effi-
ciency in a large real-world road network. The algorithm was trained using the
National Science Foundation-funded FASTER (Acquisition of FASTER - Fostering
Accelerated Sciences Transformation Education and Research) supercomputer to han-
dle large road networks in a spatial database and support training data-loading tasks
(Li and Zhang 2021).

Our RL routing algorithm uniquely considers multiple factors, including safety, reli-
ability, and efficiency, in routing calculations under dynamic and variable weather and
flooding conditions. This work makes several significant contributions to the fields of
routing and emergency management research:

e We developed a novel graph-based RL environment, complete with efficient action
and reward policies, which facilitates sophisticated routing optimization.
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e We integrated state-of-the-art reward optimization methods to train our graph-
based RL algorithm, even under the complexities of large graph-based
environments.

e We successfully scaled up the RL agent to accommodate large graph-based maps (eg
over one thousand nodes) through the use of behavior cloning optimization methods.

e We incorporated near-real-time flood data in our experimental tests to assess the
performance of the graph-based RL algorithm under realistic conditions.

The remainder of this article is organized as follows. Section 2 introduces the litera-
ture background of our research. Section 3 presents the procedures of data prepar-
ation. Section 4 describes our methodology of flooding environment development
and the details of various optimization techniques. Section 5 implements experiments
using the proposed method and analyzes the results. Section 6 discusses this method
for different applications. The last section discusses conclusions drawn from the study.

2. Background

Floods are one of the most common hazards in the United States (Perry 2000, Zhang
et al. 2014, 2019, Xu et al. 2020, Li et al. 2021b), which cause widespread devastation,
resulting in the loss of life and damages to personal property and critical public health
infrastructure. During a disaster, rapid response and effective evacuation activities are
important in minimizing the loss of life or harm to the public during natural disasters
(Murray-Tuite and Wolshon 2013, Huang et al. 2016, Yang and Shekhar 2017). Recent
studies (Hai-bo and Yu-bo 2017, Qiu et al. 2019, Yin et al. 2019, Li et al. 2021a) found
that traffic delays and unknown road conditions are the biggest challenges for effi-
cient rescue. Moreover, in Lim et al. (2013)’s comprehensive review, flood evacuation
models with different optimized variables, including travel times, travel costs,
unknown traffic, travel distance, and identification of evacuation routes with an
emphasis on flooding situations, are the main difficulties in flood disaster manage-
ment. Many researchers focused on modeling flood evacuation as a decision-support
system that combines all the information to build various spatial analysis models to
help decision-makers (Liu et al. 2006, Zhang et al. 2016, Lee et al. 2020). For example,
Liu et al. (2006) developed an adaptive evacuation route model based on the trad-
itional Dijkstra shortest path algorithm (Dijkstra 1959) to pursue the goal of minimiz-
ing the total evacuation time. Later, Zhang et al. (2016) developed a GIS-based
decision support system that can acquire situational information on flood evolution,
feasible routes, and high-risk areas for the flood detention basin. To evaluate the per-
formance of the flood evacuation model, Li et al. (2019b) simulated the flood evacu-
ation with a multi-agent system in a virtual reality environment. In recent studies, Lee
et al. (2020) modeled the spatial and temporal inundation information with a non-lin-
ear auto-regressive model to plan the evacuation route, and (Li et al. 2021a) devel-
oped an algorithm that couples high-resolution hydrodynamic and cellular automata-
based evacuation route planning for flooding situations.

However, these existing routing algorithms suffer from several limitations (Delling
et al. 2012, Chen et al. 2014, Zhang, Yang, and Zhao 2016). They are often inefficient
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in navigating complex and dynamic road networks. This is because they rely on prede-
fined road information, which may not accurately reflect the actual road conditions
during flooding events (Zhang, Yang, and Zhao 2016). Moreover, Staroverov et al.
(2020) found that traditional routing algorithms are not well-suited for real-time
updates and are limited in their ability to quickly adapt to changing road conditions.
For example, the capacitated scheduling algorithm and genetic algorithm can only
find approximate solutions (Kumari and Geethanjali 2010), and the cellular automata-
based evacuation model is limited by the accuracy of the given information (Trindade
et al. 2016). Only a few research are focused on developing routing algorithms that
can be applied to real-time changing road networks with less external traffic data. For
example, Delling et al. (2012) developed a robust mobile route planning model with
limited connectivity information in the road network. Similarly, Mirahadi and McCabe
(2021) proposed an evacuation management model that uses Dijkstra’s algorithms to
dynamically calculate and foresee consequences, and thus create an evacuation deci-
sion-support strategy. However, classical routing algorithms often assumed that there
is only one objective and that the problem’s preset environment is completely deter-
ministic. For example, Chen et al. (2014)’s path optimization model for vehicle evacu-
ation uses the greedy methodology that tries out all possible routes in a network, but
the model cannot work in a changing environment with unpredictable weather condi-
tions and other social factors. Machine Learning (ML) researchers take advantage of
the increasing computing power of GPUs to adapt a supervised neural network to
solve the pathfinding problem and demonstrate the potential ability to solve many
other location-based problems (Wang et al. 2009, Kumari and Geethanjali 2010, Yin
et al. 2023). More recently, alternative methods have been proposed utilizing cluster-
ing-based methods with evaluation algorithms for Vehicular ad hoc networks
(VANETs). For instance, based on Bagherlou and Ghaffari (2018)'s proposed routing
protocol with simulated annealing and radial basis function (RBF) neural networks,
Mohammadnezhad and Ghaffari (2019) developed a reliable routing algorithm using
simulated annealing for clustering and radial basis function neural networks for cluster
head selection, showing efficiency in terms of route discovery rate and packet delivery
rate. Later Kheradmand et al. (2022) improved the previous method’s performance
using Harris Hawks Optimization (HHO). These methods, although efficient, rely on the
specific conditions of the network and the number of generated clusters.

A particular challenge in ML-based path planning models concerns the generalization
issue and the selection of training and test data. This challenge raises the questions of
(1) whether the trained ML model will still work in a different environment (eg a different
city) and (2) whether it will work if we lack training and test data. Deep reinforcement
learning (DRL), a type of machine learning technique (Sutton and Barto 2018), has
recently been employed in such complex sequential decision-making processes to min-
imize loss and maximize the long-term gain of an intelligent agent. The choice of DRL in
our project was natural because many real-world path planning problems require an
incremental decision-making process, and the RL method has no dependencies on batch
path training datasets (Zhang et al. 2021). Moreover, compared with classical path-finding
methods (such as the Dijkstra algorithm and A* algorithm (Hart et al. 1968)) and other
supervised machine learning methods, RL-based route planning can gain experience by
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interacting through a memorized reward function with the training environment and
evaluating the feedback from the training environments, eventually performing as a self-
adjusted intelligent decision-support agent for real-world users (Bi et al 2019). In
Chamola et al. (2021)'s survey about machine learning in disaster management, the DRL
method is regarded as a self-sustainable system - this unique trait makes it very promis-
ing to support disaster management research.

Many researchers have been working on integrating RL techniques to navigate vehicles
in various scenarios Walker et al. (2019), Levy et al. (2020), Sharma et al. (2021), Wang et al.
(2021), He et al. (2022). Levy et al. (2020) used DRL to develop SafeRoute algorithms to
help pedestrians safely navigate the city by avoiding street harassment and crime.
However, their limited consideration of real-time changing street conditions resulted in no
significant improvement over simple avoidance routing. Machine learning or reinforcement
learning-based routing algorithms cannot navigate in large road networks due to scalability
issues. They are limited by the size of the data they can process, which affects the accuracy
and speed of the routing result (Geng et al. 2021). For example, both Tian and lJiang
(2018) and Sharma et al. (2021) have considered using DRL to design evacuation routes for
fire disasters in building environments, but only indoors due to scalability issues. DRL
methods have also been applied to complex multi-task path-finding scenarios Wang et al.
(2019, 2021). (Wang et al. 2019) and Wang et al. (2021) have proposed using multi-agent
DRL methods to help a group of vehicles design efficient routes in complex environments.
Other research (Shi et al. 2023) takes advantage of the traffic light to optimize the travel
time using DRL. However, no existing studies have provided an efficient solution to handle
large-scale, real-world flood evacuation events.

Sample efficiency is another challenge that many researchers have faced when
designing a routing algorithm (Kakade 2003, Sohn et al. 2021). Sohn et al. (2021)
showed that achieving good learning in Markov Decision Processes (MDPs) path plan-
ning problems requires a large number of samples in RL algorithms. To address this,
Pathak et al. (2017) and Seo et al. (2021) proposed using external neural network
encoders to embed the environment features as intrinsic rewards to optimize the
training procedures of an RL agent. Recent researchers (Christiano et al. 2017, Kumar
et al. 2021) have found that integrating the behavioral cloning method (Schaal 1999)
in RL training can improve the policy’s performance. In a recent study on human-cen-
tered RL, Li et al. (2019a) demonstrated the importance of using human feedback in
DRL, which can improve applicability to real-life problems.

In aggregate, Table 1 below summarizes the key characteristics of several routing
algorithms that are used in real-world cases. According to the comprehensive survey
about the routing algorithm by Tyagi et al. (2022), we included the environment set-
tings, algorithm type, completeness, and limitations as comparison attributes. The
environment setting can be either VANETs, or static, where the road network is pre-
defined and unchanging, or dynamic, where the road network can change in real-
time. The algorithm setting can include traditional methods like Dijkstra’s algorithm,
GIS-based methods, robust mobile routing, greedy methods, and ML methods such as
supervised neural networks (NN), simulated annealing (SA), and deep reinforcement
learning (DRL). The completeness of the algorithm refers to whether it provides an
exact solution or a heuristic (approximate) solution.
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Table 1. Comparison of real-world routing algorithms.

Reference E. Algorithms C. Comment

Liu et al. (2006) S*  Dijkstra E Inflexible to changes

Zhang et al. (2016) S*  GlIS-based H  Limited in real-time route updating
Delling et al. (2012) D*  Robust Mobile H  Limited connectivity
Mohammadnezhad and Ghaffari (2019)  V*  SA & NN H  Rely on existing condition
Mirahadi and McCabe (2021) D*  Dijkstra E Single objective, deterministic
(Chen et al. 2014) S*  Greedy H Inflexible to changes

Lee et al. (2020) S*  Supervised NN H  Generalization issue

Li et al. (2021a) D*  Cellular Automata-based H  Limited accuracy

Levy et al. (2020) D*  DRL (SafeRoute) H  Limited real-time updates
Sharma et al. (2021) S* DRL on g-matrix H  Limited to indoor environments
Wang et al. (2021) D*  Multi-agent DRL H  Limited to small-scale scenarios
He et al. (2022) D*  DRL H  Navigation Comparison

Shi et al. (2023) S*  Adaptive DRL H  Limited to small-scale network

E.: Environment; S*: Static; D*: Dynamic; V*: VANETs; C.: Completeness; E: Exact; H: Heuristic.

3. Data collection and processing

This study can be applied to any transportation network in urban or rural areas. Point
data with longitude and latitude can be used to represent the Points of Interest (POI)
that a user wants to avoid. In our experiment, we used transportation network data
collected from New York City and Houston. For the New York City case study, we used
New York City 311 data as the POI data, and for the Houston case study, we used
gauge data as the POI data.

For the transportation data, the original map information was collected from
OpenStreetMap, a free collaborative world map (Bennett 2010). In our experiments
(Section 5), we chose to export map information for the downtown areas of
Houston and New York City. We used the Houston road network to demonstrate
the algorithm’s performance, and then used the New York City road network to
show that our algorithm can also be applied to other cities in the US with differ-
ent types of POl data to demonstrate the scalability and flexibility of our algorithm.
We first converted the routing map (street network data) into graph-based data
using the methods introduced in Section 4.1. For each node, the route map
contains:

1. Node id: unique ID of each node.

2. Longitude and Latitude of the node location.

3. Elevation (meter): the elevation information is collected using OpenTopography
Krishnan et al. (2011).

4. Lowland (Boolean): the lowland attributed of node n is preprocessed using eleva-
tion data:

L — {True YEN > En )

False otherwise

where &£y denotes as elevation set of neighbors of node n, £, denotes as elevation of
node n.
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Each edge contains the following information:

1. Edge id: unique ID of the edge.

2. Node ids: The ID pair of nodes that connect the edge.

3. Preset attributes: show the preset open street map attributes, including the num-
ber of lanes, highway type (eg tertiary, secondary, etc,.), one-way (Boolean), bridge
(Boolean), road length (meter), speed limits (kmph), average speed (kmph).

4, Grade (—90 ~ 90): show the slope of the road, calculated by the elevation of
nodes; usually less than 30.

5. Bearing (0 ~ 360): show the bearing direction of the road, calculated by the
Longitude and Latitude of nodes (e.g. O represents north and 90 represents east).

When examining graph theory, a graph can be depicted by an adjacency matrix.
This matrix showcases the segments of the graph, with indicators such as 0,1 that
demonstrate whether a particular edge connects to the node or not. However, map-
ping a real-world map into an adjacency matrix poses significant difficulties due to
the intricate attribute information that the map holds. This information includes street
type, street speed limit, elevation, and grade. To manage and update this data, we
utilize NetworkX (Hagberg et al. 2008, Rossi and Ahmed 2015). We also incorporate
additional data sources, such as the BluPix application' and the New York City 311
data’, which is a public dataset recording non-emergency service requests in New
York City. For the purpose of street flood analysis, we used a processed version of the
New York City 311 data.?

4, Methodology
4.1. Preliminaries and formulation

4.1.1. Graph representation in pathfinding problem

A road network can be modeled as a directed Graph G = (V,E), where V=
{v1,v3,...,vp} denotes a set of n vertices in graph and E = {e;,e,,...,en} denotes the
set of roads as m edges in graph. Figure 1 illustrates the comparison between the
real-world representation of the routing system and the graph-based routing system.
For example, Figure 1(a) shows an example of navigating from point A to point B
using Google map, while Figure 1(b) represents the graph-based view Herman et al.
(2000).

4.1.2. Markov decision process (MDP)

In the RL, the routing system can model as an MDP tuple M = (S, A, R, p), where S
denotes as state set, .4 denotes s an action set, p denotes as a transition probability,
R is a reward function and p is initial state distribution (Sutton and Barto 2018). Each
state s contains all the information (described in Section 4.2) that the agent observed.
The value of a policy = is denoted by

Ve(s) =E” {Z Yrelso = s} )

t
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(a) Example of using Google Map to navigate
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95.3742963) in Houston

(b) Graphical representation of using open
street map NetworkX (OSMnx) to plot street-
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navigation generated by classical Dijkstra algo-
rithms

Figure 1. A demonstration of a real-world road map and graph road network.

where r € R denotes a reward, and y € [0, 1] denotes a discount factor, which cares
for the rewards the agent achieved in the past, present, or future. Equation 2 aims to
achieve the optimal policy 7* which maximizes the expected return:

(3)

" = arg max,Es.,[Vi(s)]

The optimal policy n* will take the best action from the action space (described in
Section 4.2) to lead the agent to reach the goal.

4.2. Environment settings

4.2.1. States
The state s € S, also known as an observation, represents the agent’s current status
on the map. In RL applications, the settings of the observation space and action space
play an important role in the downstream task of RL. The state of an agent contains
the current node and target node, which allows the agent to recognize that state and
take appropriate action to reach the goal. If the agent observes the current node at a
later training time with a target node in the opposite direction from before, the agent
may take the opposite action to correct the direction. Furthermore, in the early train-
ing stage, the agent tends to be more curious, meaning the agent will try to explore
more unseen states by taking as many unknown actions as possible, especially in a
large environment (eg the Houston metro area). In our model, the states include two
parts: graph observation and flooding observation.

In a flood scenario, the agent can get an overview of flood depth information from
our graph environment. Additionally, the raw flooding information only contains
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(a) An agent takes action during the training. The (b) A simple demonstration of action space in

green arrow is three actions (Turn left, Proceed, Demircan et al. (2011), Sharma et al. (2020) that

and Turn right) in action space. all nodes in the observation are available actions
that let the agent choose a valid one.

(

Start 9 “'Mrf ,,#7 |

Masked Flooded|

(c¢) A simple demonstration of action spaces in Levy (d) Action mask in RL navigation environment.
et al. (2020) that contains eight compass directions. The grey dotted line represents a masked action.
The action space in Geng et al. (2021) has a similar

design but only focuses on four directions.

Figure 2. A comparison of different action designs in RL navigation research. The yellow nodes are
the start and target points, and the blue node is a flooded point. This sub-graph is sampled near
(29.7685519,-95.3772329) in Houston downtown.

longitude, latitude, and flood depth (inches). Therefore, we need to convert the flood-
ing information to distance with uniform measures (meters). Given two nodes (the cur-
rent node A and the flooded node ¢), distance is calculated using Equation (20)
(Appendix A). Figure 2(a) shows where flooded points are located in a road network.
With fixed latitude and longitude information, the agent can obtain an overview of
flooding formation directly from the graph. However, using latitude and longitude
coordinates to represent the flooded point does not give the agent any direct infor-
mation (Levy et al. 2020). It is challenging to store all reported floods in our observa-
tion. Thus, to use the node attribute to represent flooding information in graph
observation, we used the graph embedding method (generated by node2vec (Grover
and Leskovec 2016)) to embed the flooded nodes. Given a k-nearest reported stop
sign, the flooding observation can be expressed as a 2 x d matrix s, = (en, er — €p),
where e, denotes the node embedding of the current node, and e; denotes the sum
of the embedding representation of all reported flooded points. In the real-world
experiment, our environment setting becomes more complicated to optimize the
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simulation of real-world dynamic flooding events. So we involve a new mechanism
called ‘evolving’ to simulate dynamic flooding (described in Section 5).

4.2.2. Actions

Actions in the environment represent moving from one street node to another. An
agent performs an action to receive an updated state to observe the environment and
prepare for the next action. An evacuation agent’s action depends on its state and
then determines its behavior. Figure 2(a) demonstrates how an agent takes action dur-
ing training. The agent has three discrete actions (shown as green arrows) in one
state. Through a policy network, the policy will eventually converge to an optimal pol-
icy that will take the best action to lead the agent to reach the target node. In our
environment, the action space is discrete, which follows the human decision-making
process in wayfinding, such as ‘Turn left, ‘Proceed,’ and ‘Turn right.” However, not all
nodes are located at the intersection with four sides. Some nodes are fork roads, and
some nodes are highway exits with two sides. Therefore, the action needs to be
masked (described in Section 4.3.2). In our study, the action was formatted as a car-
dinal number in the training step.

4.2.3. Reward function

The reward function evaluates the action of the agent in each state. In a policy net-
work, the task of the agent is to maximize the reward function. The reward measures
whether the agent reaches the target node or whether the agent falls into a flooded
situation. In our environment, the agent optimizes various preferences so the reward
function must be designed with several factors. Since the main goal of our evacuation
routing problem is to reach the destination safely, we embed the safety factor into
the reward as a function of distance from the current node to the closest flooded
points. A list of the reported flooded depth is traversed and updated for each step
during the training step. In the urban area, flows greater than 9cm depth and 1.5-
2m/s velocity can generate a loss of stability for subjects weighing 50-60kg (Russo
et al. 2013) and the effect evacuation time is 10 min (Vicario et al. 2020). Even though
our evacuation plan is designed for vehicle routing, the safety of passengers is equally
important and needs to take into consideration. We assumed the flooded depth of
over 9cm is a dangerous flooding node and the velocity of flooding is constant at
1 m/s. Then, the reward for the flooding factor can be expressed as follows:

. d,
Iiood = —mMin(0, max (C, log, .;)),rﬂood € [C,0] (4)

where C € [—-00,0] is an adjustable parameter in the environment setting to limit the
negative reward of the flooding factor, d; is the closest distance between the current
node to a dangerous flooding node and T denotes an effect evacuation distance. In
Equation (4), we use a logarithm function to control drops in the reward curve during
training. Through this process, the agent can learn to leverage the penalty and take a
faster road when the distance between the current position and the closest flooded
point is acceptable. In addition to the flooding factor, the final goal of reaching the
destination also needs to be added to the reward function. Considering the Al safety
issue that agents should not try to introduce or exploit the reward function to get
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more reward (Leike et al. 2017), the goal reward should be simple and effective
(Chevalier-Boisvert et al. 2018, Sutton and Barto 2018, Levy et al. 2020). Note that the
reward function of the flooding factor will also not generate any positive reward to
the agent to avoid reward abuse. Thus, our reward is simply set as:

(5)

| 1+ rpoeq if current node == target node
1 rood otherwise

Using a simple reward function in RL routing methods for evacuation scenarios can
result in sparse reward environments, where most of the reward signals are equal to
or less than 0.0. Sparse reward environments can pose challenges for RL algorithms as
they may lead to slow learning or difficulty in finding optimal policies due to the lack
of informative feedback. In such an environment, agents have to navigate (and change
the underlying state of the environment) over long periods of time, without receiving
much (or any) feedback (Pathak et al. 2017, Moritz et al. 2018). Section 4.3.3 shows the
methods for dealing with sparse rewards in our RL flooding evacuation model.

4.3. Flood evacuation model using reinforcement learning

This section introduces detailed information about the optimization process and adap-
tation methods. We applied our graph-based RL algorithm to a large-scale road net-
work to support risk-informed decision-making. In our study, agents explored the
study area with a flooding event in four stages.

4.3.1. Policy network

MDPs are the bases for an RL framework that can underlay the unknown state prob-
ability distribution and transition probability to get an optimal policy 7* to decide
which road should go. Several methods have been discovered to find the optimized
w* (Watkins and Dayan 1992, Schulman et al. 2017). Recently, the policy-gradient
method has shown state-of-the-art improvements toward graph RL research and navi-
gation tasks (Schulman et al. 2017, Bghn et al. 2019, Silva et al. 2020). In policy gradi-
ent methods, build upon an estimator of policy gradient and plug it into a stochastic
gradient ascent algorithm that adjusts the weights of the policy towards the maximum
rewards. The most common gradient estimator g is given by:

Ar(St,Gr) = O(Sr, C’t) - V(St) (6a)
g =R, [V@ log n{)(at|sr)Ar} (6b)

where 7y denotes stochastic policy, A; is the estimator of the advantage function at
time step t, a is action follows a; ~ n(a|s¢) and s is state follows s; + 1 ~ P(t + 1|s¢, a;)
for t < 0. In this case, the expectation E, is the empirical average over a finite trajec-
tory t of our environment samples. Here we define the trajectory 7 as a sequence of
state, action, and rewards:

1= {(So,ao,l’o),(51,a1,r1),,._} 7)

Q(s:,a;) and V(s;) in Equation (6a) are state-action value function derived from equa-
tion (2) via MDP in the trajectory. This can be intuitively taken as the difference of Q
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value (future discounted rewards) and the average of action which it would have
taken at state. It shows the extra reward that an agent could obtain by taking a turn
in an intersection. Since g is a gradient estimator like other estimators in deep learn-
ing models, it is obtained by an objective function (or loss function) that differentiates
the objective:

LPG(()) = Et IOg m)(at|5t)At:| (8)

where 0 is the policy parameter. This policy gradient optimization makes RL frame-
works more like general optimization problems where the deep learning training
method is applicable. Then training method involves an objective to minimize the loss
function, where the parameterized approximator can be established. Conversely,
reinforcement learning consists of an unknown and non-differentiable dynamic model,
which causes the increased variance of the gradient estimator. Considering these limi-
tations, we use Proximal Policy Optimization (PPO) (Schulman et al. 2017) to optimize
the policy. In PPO methods, the objective function is expressed as follows:

LEP(0) = B [min(re(0)Aq, clip(re(0),1 — 6,1 4 €)A;)], 9)

where r(6) = % is the ratio of the probability under the new and old policies
Dlr trot

and e is a tunable hyper-parameter (generally 0.1 or 0.2). The clip term clip(r:(6),1 —
€1+ e)ﬁ\t in equation 9 modifies a surrogate objective function (Schulman et al. 2015)
by clipping the probability ratio, where the minimum of the clipped and unclipped
objective is taken and the final objective is a lower bound on the unclipped objective
(Schulman et al. 2017). In the experiment Section 5, the agent adapted a well-estab-
lished learnable estimator, so a tuned neural network will be introduced in the next
step to train the evacuation model.

4.3.2. Action mask

As stated in the previous Section 4.2, the existing flood evacuation algorithms lack the
capability of dealing with complex environments. For example, Sharma et al. (2021)
uses nodes in observation as action to train an agent to plan an evacuation route in a
fire situation. It requires the agent to first learn to memorize the neighborhood nodes
and choose a valid action via Q-learning (shown in Figure 2(b)). Figure 2(c) also shows
an example of action space without an active mask. Once the observation extends to
a large number of nodes (eg over a thousand nodes), the Q-learning method will be
extremely hard to converge (Low et al. 2019). In contrast, Figure 2(d) demonstrates
how the action mask works in our flooding evacuation model, and only valid action is
presented to the policy. To remove the invalid actions and adapt the policy network
to our environment, we designed an action mask method to avoid invalid actions
affecting our policy network, which masks all invalid actions in each state. To incorpor-
ate the change in action, the policy network in Section 4.3.1. needs the following
modifications:

1. The trajectory 7 in Equation (7) only use valid actions
2. Only valid actions are calculated in Equation (6b) during the gradient descent.
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The policy network first outputs logits (also known as scores without normalization
in the neural network) and then converts them into an action probability with an acti-
vation function. In this case, the MDP is an action set with three directions A =
{ao,a1,a,} denoted as turn left, proceed, and turn right respectively. The decision to
limit the action space to these three options was made based on a comprehensive
statistic of real-world road networks Appendix D. Our studies showed that intersec-
tions requiring more than these three actions, such as 5-way intersections or situations
necessitating a U-turn, constitute a minor percentage of the total intersections in
major cities. Moreover, expanding the action space to include these additional actions
would significantly increase the complexity of the model. Further, consider a policy =
in Equation (6b) parameterized by 0 = [ly, I1,/,] =[1.0,1.0,1.0]. Assume we directly use
0 as the output logits for easier representation. Then in an initial state sy that an agent
in a start node, we have:

7o(+|So) = [mo(ao|So), mo(ar|s1), mo(aa|s2)] = activation([lo, r, 1))
exp (I;) (10)
7p(ai|So) = =———~
(a50) = 5 exp (1)

Assume ay is invalid for state s, the re-normalized probability distribution mj(-|so)
will be calculated by an activation function (eg softmax) as [0.5,0.00,0.5]. Thus when
an agent traverses a road network, every time an agent makes a decision at an inter-
section, only a valid turn will be chosen by the policy network.

4.3.3. Exploration

In reinforcement learning, ‘agent exploration’ plays an important role in the training
process. The existing literature indicated that agents in reinforcement learning algo-
rithms suffer from sparse reward issues (Savinov et al. 2018). For example, the agent
cannot receive a reward until it arrives at a destination in a disaster event. One solu-
tion to this problem is to design an intrinsic reward by the agent itself, following steps
such as observing, memorizing, and recalling (Savinov et al. 2018). Let the intrinsic
reward generated by the agent at time t be r,, the original reward be r¢ and the
trade-off parameter between the exploration and exploitation be f. The optimized
reward can be:

rt:rH—[f-rf amn

In this way, a new objective of an agent can be developed by maximizing the sum
of these two rewards. Pathak et al. (2017) used self-supervised representation learning
to encode the observation feature for exploration. Conversely, Seo et al. (2021) encour-
ages exploration without introducing representation learning but utilizes a k-nearest
neighbor state entropy estimator in a randomly initialized encoder. In our policy net-
work, we adapt these two intrinsic reward methods to our agents.

1. Reward by auto-encoder representation learning: The auto-encoder representa-
tion learning follows the idea of Pathak et al. (2017). Given a raw observation s,
an auto-encoder neural network (Lange and Riedmiller 2010) is used to encode it
to a feature vector ¢, where the feature vector stores the information of the road



INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE . 197

situation (eg the distance between the goal node and current node). The auto-
encoder consists of two modules: encoder and decoder (also called inverse model
and forward model). The predicted action a; from action a, taken by the agent
from the state s; can defined as:

ar = Ge(P(5t, 0c), P(st11,0e); 0:) (12)

where 0; and 6, are the learnable parameters in the encoder neural network g, and
are trained to optimize the minimal discrepancy between the original action and pre-
dicted action. In the decoder g, the a, and ¢(s;, 0.) can be used to predict feature
encoding of the s¢ :

¢ (st11) = F(§(st, 0c), ac; 0r) (13)
where f is the function that is trained to optimize the regression loss between the pre-
dicted estimate of ¢(s;.1) and the actual ¢(s;.1) and finally, the intrinsic reward is
computed as:

rt = [ (se1) = dlsea)ll3m > 0 (14)

In the section of experiment 5, we introduce our tuned auto-encoder network for
intrinsic reward agents.

1. Reward by random-encoder: The random-encoder (Seo et al. 2021) is based on a
k-nearest neighbor entropy estimator (Singh et al. 2003). The random encoder is
based on a state entropy, which is calculated based on its distance from k-nearest
neighbor states present in the replay buffer in the representation space. Let X C
R be a random variable with a probability function p. The random-encoder starts
by using the differential entropy (Michalowicz et al. 2013) to create a high-dimen-
sional feature space (or representation space) to monitor the observation of a
moving agent. The high-dimensional space can be represented as H(X) =
—Exp(x) [logp(x)]. Since our observation of road network in low dimensional, we
employed particle-based k-nearest neighbors (k-NN) as training samplers for X as
follows:

YR k=NN
HN:N;IOQHXI‘_X,' P (15)

where x*~NN denotes the k-NN of x; within a set {x;}", (Seo et al. 2021). The difference
between the states in the low-dimensional feature space of a randomly initialized
encoder can be calculated using the distance measure. By utilizing Equation (15), we
can treats each transition as a particle (Liu and Abbeel 2021), the intrinsic reward of
the random-encoder can be expressed as:

re = log (|ly; — y¥<™"V||, + 1) (16)

where y; is a fixed representation outputs from a random-encoder and y¥"N is the k-
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nearest neighbors of y; Measuring the difference between states in the feature space
can enable a more stable intrinsic reward as the pair of states does not change during
training (Seo et al. 2021). The comparison of those two explorations is present in
Section 5.

4.3.4. Scaling optimization

Navigating large road networks often leads to sparse rewards, making it challenging
for agents to reach their goals. The design of scaling optimization assists the agent in
demonstrating robustness in real-world applications (Li et al. 2019a). Researchers,
inspired by human imitation behavior, employ imitation learning (IL) (Schaal 1999) to
learn from historical trajectories to construct an agent. This approach circumvents the
need to learn from sparse rewards or manually specify a reward function. The resulting
agent can be designed for higher horizons or multi-task goals in industry applications
(Magzhan and Jani 2013).

In this section, we present a scaling optimization design that imitates expert deci-
sions to support agent navigation in a road network comprising over 80k nodes. The
behavior cloning optimization trains an agent using a sequence of decisions from
human experts %; € {%1,%2,...,Tm}, Wherein each decision comprises expert trajectories
as follows:

3 =< (5"1,a"1), (sg,ag),... > (17)

For each trajectory 7 in the dataset 7, the scaling optimization estimates the advan-
tage function A" (s, a;) = (R — Vy(s;))/c for time t = 1, ..., t. This function measures the
relative quality of an action at a given state compared to the average action at that
state under the policy. Here, Vy(s;) represents the value function discussed in Section
4.1, and R, represents the modified reward function Ry =o-ri+ f-r¢ + ylog (||z: —
zf||, + 1), where z is a path representation containing a sequence of node ids at time-
stamp t. The term z/ denotes an expert path decision. In the experiment settings
(Section 5), we utilized a random sampling method to summarize the path feature
and the path dimension was adjusted according to statistical results. We used the
implementation of the monotonic advantage reweighted imitation learning (Wang
et al. 2018) method in Ray Rllib (Liang et al. 2017) for behavior cloning optimization
by maximizing the following estimation with hyperparameter f:

E(s,,a,)et €XP (BA" (st ar)) log mg(aylst) (18)

In traditional pathfinding problems, the shortest path can be approximated using
greedy or heuristic algorithms. For our experiment, we utilized a trajectory generated
by a multicriteria decision-making routing algorithm under flood emergency condi-
tions (Alizadeh et al. 2022) that we had previously collected. When the environment
becomes static—ie the flood ceases to evolve and avoidance areas are no longer a
concern—the routing algorithm simplifies to a general shortest path finding the prob-
lem. In such circumstances, the decisions made by these algorithms can be considered
expert decisions.
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5. Experiments and results
5.1. Flooding environments

We can obtain flooding information in urban areas using various information sources.
Using the lowland attribute we added in Section 3, if the weather of the flooding
environment is rainfall or the statistic precipitation level is high, we claimed that the
lowland intersections have a higher chance of being potential flooded points accord-
ing to the existing flooding information. In a real-world environment, flooding condi-
tions in urban areas are more uncertain due to weather factors. Thus, we added the
‘evolving’ mechanism to simulate this situation. The ‘evolving’ setting can be config-
ured as a parameter of the flooding environment. If the ‘evolving’ setting is enabled,
we will randomly choose many intersections labeled with lowland (excluding the ori-
gin point and goal point) as new flooding points with average flooded depth. For
example, if the ‘evolving’ is configured as 10, a new flooded point will generate every
10 steps in an episode. In the next episode, the environment will also be reset to
clean up all generated flooded points and keep only stop signs and gauge flooding
information.

5.2. Experiments and training

Our research was demonstrated in two distinct study areas: Houston and New York
City. In the case of Houston, flood data was sourced from the period of Hurricane
Harvey (August 17, 2017 to September 3, 2017). The New York City environment was
selected to demonstrate the scalability of our algorithm. Comprehensive information
regarding our experiments is provided in Appendix B. Figure 3 illustrates the workflow
of how our policy neural network interacts with the flooding environment. Within the
policy neural network, we utilize an exploration encoder, comprising a representation
encoder and a random encoder, to aid agents in identifying the destination point

Exploration Encoder Gym Observation Space (Dict) Type:
. i Box: [ADJ. Graph NODE2VEC Embedding],
Representation Random Encoder *I Box: [Flooding NODE2VEC Embedding],

Encoder . Box: [Target Node, Current Node, Path Length,

Step],
Box: [Action Mask],
}

5 ) Gym Observation Space (Flatten) Example:
: 1 Predict Next State i i Negative Entropy of the :
Agent > Representation i Latent State Distribution :

{

Box: [232 432 234 121... 2315 53 64 767 ... 23
7..0001001]

}

Scaling Optimization Action Space:

{
Discrete: 0 (R) | 1 (L) | 2 (F)
)

§Policy Network ;gEnvironment

Figure 3. A demonstration of our policy neural network interacts with a flooding environment.
The expected reward is integrated with intrinsic reward, extrinsic reward, and a scaling
optimization.
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Figure 4. A demonstration of reinforcement learning simulation process.
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Figure 5. A comparison of results of different optimization methods in our experiments. The y-axis
is returned episode reward and returned episode length and the x-axis is the training steps. Here
we use an exponentially weighted moving average with 500 window size to smooth the line chart
for better visualization. The smoothed line chart is marked with the prefix ‘MA-". The ‘RE’ is the
experiment of the random-encoder method. The ‘AE’ is the experiment of the auto-encoder repre-
sentation learning method. The VAN’ is the vanilla version of proximal policy optimization. The ‘SC’
is the scaling optimization method.

within a road network. The observation space, depicted on the left side, consists of
various types of information, including neighborhood graph embedding, flooding
graph embedding, target node, current node, path information, and action mask. The
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Figure 6. A demonstration of our policy neural network interacting with flooding environment.

action design, detailed in Section 4.3.2, is characterized by three directional move-
ments: right (R), left (L), and forward (F). The reinforcement learning simulation process
is depicted in Figure 4. In our configuration, the graph functions as the environment,
with the simulation process running continuously until convergence of the policy net-
work is achieved. The graph environment provides a reward as feedback to the policy
network for parameter optimization, based on the actions taken by the agent. The
simulation episode concludes when the agent reaches the destination point or
exceeds the maximum horizon (episode length), at which point the environment
returns a terminal signal. As demonstrated in Figure 5, the overall simulation com-
prises approximately 2 million episodes, with each episode containing around 100
steps. This robust simulation process ensures a comprehensive exploration of the
environment and the effectiveness of our policy network.

In the training step, we followed the definition of the path finding algorithm (Hart
et al. 1968), so an agent starts from an arbitrary node and moves along the edge
between nodes as a path until it reaches the destination node. Since the hyper-param-
eter tuning for different models varies from experiment to experiment, we used ‘Tune’
(Liaw et al. 2018) to adjust the neural network structure and all other configurations.
For example, in the Houston experiment, the tuned neural network structure for a ran-
dom-encoder method is 256 x 256 x 256 fully-connected hidden layers with ‘RELU’
activation functions (Agarap 2018). In the experiment of the auto-encoder method,
the inverse model and forward model were both set to 256 x 256 and the hidden
layers were tuned to 256 x 256 x 256 with ‘RELU’ activation functions. The PPO policy
network was tuned with 128 full-connected hidden layer for action masking with fully-
connected hidden layers with a dimension of 256 x 512 x 256. The learning rate for
small and large environments was set to 0.0003 and 0.0005, respectively. In general,
the tunable reward factors « and f can be set to 0.5. As mentioned in the literature
(Pathak et al. 2017), the reward factor can also be optimized by linear or exponential
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Figure 7. A illustration of using high-performance cyberinfrastructure architecture to implement
the reinforcement learning routing algorithms. We used four nodes to balance the workloads for
training and each node has a 64-core CPU with an NVIDIA Ampere A30 Tensor Core GPU to accel-
erate the computing.

decaying function. During the large experiment training, we increased the weights of
% up to 0.5 following a linear space to help the agent follow the scaling optimization
(Figure 6 shows the result of evacuation routing in a large flooding environment with
0.5 weighted scaling optimizations). We reset the environment in every training epoch
to randomly sample a different node pair as the start node and destination node for
generalization purposes. At the beginning of the training (for the first 100 epochs), we
manually control the distance between the start node and destination node to let the
agent learn the reference route faster (Goecks et al. 2019). Besides, we developed a
data loader to process multi-dimensional data collected from each observation. In the
data loader, the observations are flattened, and the different states in observation are
flattened as 1 x N dimensions. We developed a high-performance geospatial cyberin-
frastructure to optimize computational efficiency (Li and Zhang (2021)). For example,
we used a Ray cluster (Liang et al. 2017) with three nodes to balance the workload of
RL training. Figure 7 illustrates the general framework of the geospatial cyberinfras-
tructure used in this project. We used four nodes to balance the workloads for train-
ing, and each node has a 64-core CPU with an NVIDIA Ampere A30 Tensor Core GPU
to accelerate computing. The master node and control node control all computing
resources in our cluster and maintain the weights of the policy network. Each worker
node is a replica set of training units, and it clones the flooding environment to per-
form distributed training.

5.3. Evaluation and results

We evaluated our model in several experiments. Because our task is focused on safety
evacuation paths during the flooding event, the quality of the paths is measured using
a safety metric that can be expressed as below:
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Figure 8. A demonstration of routing evaluation on random sampled Houston environment in
16,000 times. The red line is the smoothed moving-average using our method and the blue line is
the smoothed moving-average using traditional method. The y-axis is the distance (meters) to the
closest flooded point and the x-axis is the number of sampled routes.

S omin(dist(i, F))
n

Safety = (19)

where n is the number of nodes along the path, i is the index of the nodes, and func-
tion dist calculates the closest distance between the current node i and the flooded
node-set F. Figure 8 illustrates our recorded results from 16,000 route samplings. The
blue line depicts the safety test results obtained using a traditional Dijkstra routing
algorithm, while the red line represents the results from the scaling optimization. Both
‘MA-" lines have been smoothed using an exponentially weighted moving average
with a window of 1000 for clearer visualization. In a real flood event, a distance drop-
ping to zero signifies a vehicle being inundated. The experimental results indicate that
the traditional evacuation routing algorithm more frequently traverses flooded points,
thereby potentially compromising passenger safety. Although our model occasionally
approaches flooded points (eg around the 14,000th sample), it predominantly main-
tains an evacuation route that is safely distanced from flooding. This proximity to
flood points is a result of the model balancing the effects of the reward discount (y)
and the safety factor. Importantly, our method does not directly traverse flooded
points, suggesting that it surpasses traditional algorithms in terms of safety evaluation.
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In reinforcement learning, the model’s performance is evaluated using various met-
rics, including the episode reward and the episode length. The episode reward, com-
prising a sequence of states, actions, and rewards ending with a terminal state,
reflects the model’s ability to accumulate rewards within a specific environment and
RL setting. Meanwhile, the episode length, indicating the number of actions an agent
takes in an episode, can shed light on the agent’s exploration capabilities and strategy
utilization.

In our study, the episode length also represents the number of interactions the
agent has with the environment. We employed distributed training techniques, scaling
up to 4000 replications per iteration across three working nodes. We recorded the epi-
sode rewards and episode length after 400,000 trained environments for a small set of
environments and after 1,600,000 trained environments for a larger set, using these as
evaluation metrics.

Figure 5 presents the evaluation results across different training environments, with
the y-axis indicating returned episode reward and length, and the x-axis representing
training steps. An exponentially weighted moving average was used to smooth the
line chart for enhanced visualization. Figure 5(a) demonstrates the training evaluation
on Houston’s small size map (a rendered demonstration can be found at 1). The
detailed evaluation score is also listed in Appendix C. The results indicate that
reinforcement learning models with extrinsic reward augments outperform the vanilla
version of proximal policy optimization in terms of episode rewards. The auto-encoder
optimization had a slower convergence than the random-encoder. However, the auto-
encoder representation method had a better final performance at the conclusion of
the training because the random-encoder takes a different exploration strategy during
the training. Figure 5(b) shows the episode length evaluation of the random-encoder
is much higher than the auto-encoder method. This means the random-encoder rec-
ommends an evacuation route with more detours to avoid flooded areas, thereby pro-
viding a relatively bad consideration of the ‘shortest’ factor.

Therefore, we used the auto-encoder proximal policy optimization (PPO) model as our
base model to generate optimal evacuation routes. To better analyze the actions taken by
different optimization methods, we sampled those actions in a small test environment
(Figure 9(a)). When an agent takes an action during training (green arrows are the three
available actions that the agent can choose), we record each action and plot its distribution.
Figure 9(b) shows the comparison of the auto-encoder representation method and the ran-
dom-encoder method. We found out that the red dot (random-encoder) did not show good
convergence for action 3 (Figure 9(b)) in the later training process, which means that the ran-
dom-encoder had a much longer exploration period. This is also in line with the previously
mentioned longer episode length in the evaluation of the random encoder. Based on the
auto-encoder, we added scaling optimization for large environment training. Figure 5(c)
shows the scaling optimization (green line) with the behavior cloning method to plan the
evacuation route in a large city road network. The results show that PPO methods with auto-
encoder optimization can only produce good results when the agent is far away from the
submerged point and barely able to reach the destination point. Figure 5(d) also shows that
the episode length of the scaling optimization method remains within a reasonable range.



INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE . 205

3 MM % AF
2.5

2 X KRN = = e XK.

1 W MmN = € 06 st
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Figure 9. The exploration and exploitation comparison of auto-encoder representation learning
method (AE) and random-encoder method (RE). In this small environment (shown in the left fig-
ure), the best action is ‘turn right’, which is numbered action ‘3.

In Figure 5, the episode curves for the large and small Houston maps differ signifi-
cantly. This divergence is primarily attributed to the exploration-exploitation trade-off
and environmental non-stationarity. Initially, the agent’s exploration strategy identifies
rewarding action sequences, leading to an episode reward and length surge. However,
as the agent refines its policy amidst continued exploration, temporary setbacks may
occur, explaining the subsequent reward and length drop. This phenomenon is par-
ticularly pronounced in large, complex environments where simplistic models may
struggle to capture the full environmental complexity, resulting in suboptimal per-
formance. The non-stationarity of the environment, as detailed in Section 5.1, also
plays a crucial role. Our model’s evolving mechanism, simulating urban flooding’s
uncertain nature, introduces new flooding points during episodes in large road net-
works, increasing environmental complexity and unpredictability. This contrasts with
small road networks, where shorter episode horizons limit the evolving mechanism’s
impact. On the small road network, the agent rapidly learns an optimal policy due to
the environment’s relative simplicity and stability. Conversely, on the large road net-
work, the agent requires more time to adapt to the complexity and variability intro-
duced by the evolving mechanism, explaining the initial reward and length increase,
subsequent drop, and ultimate convergence.

We conducted simulations to investigate how our policy neural network interacted
with the flooding environment using data collected during the Hurricane Harvey
period from August 17, 2017, to September 3, 2017. The results of this simulation are
presented in Figure 6. In the presence of changing flood conditions, the map informa-
tion in traditional navigation software becomes distorted. However, our agent can
improve the reference path even without this information by combining street infor-
mation within the near-visible range and external flood information to develop an
optimized evacuation route. Our approach generated an evacuation route for both the
training environment (Figure 6(a)) and OpenStreetMap (Figure 6(b)). The outcomes
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Figure 10. An illustration of using New York City 311 data to build a flooding environment for
testing our reinforcement learning routing algorithm. (a) 311 calls made during the week following
Hurricane Ida (blue) and the week following Hurricane Henri (red) from Wu (2021). (b) The results
of using New York City 311 data to test the adaptability of our proposed framework. The yellow
dot and green dot represent starting point and destination point, respectively.

indicate that our approach can efficiently plan a secure route during a flood event
with limited information on the actual road network.

Our proposed framework worked well using various datasets. For example, Wu
(2021) used New York City 311 data (NYCOpenData 2022) to create a near-real-time
flooding map to help people understand the impact of Hurricane Ida. Figure 10(a)
shows the flooding map in New York City created by New York City 311 data. Simply
replace the flooding dataset with the previously mentioned (Section 3) data format,
and we train and run our model into a different environment. The results of using
New York City 311 data instead of the BluPix dataset to test the adaptability of our
proposed framework are thus plotted in Figure 10(b). Our model still works well in a
new environment using different data sources.

6. Discussion

The reinforcement learning method estimates each state-action value to optimize dis-
aster evacuation strategies. More route strategies and spatial patterns can be found
and investigated by choosing different reward factors instead of the proposed opti-
mization techniques. For example, we can use road type attributes as a reward factor
to change the road preference for the evacuation agent. Figure 11(a) shows the regu-
lar evacuation plan in a small environment without road type preferences. By reward-
ing the route with a road type rlrad :LT" (eg Lp denotes 'primary’ road type and L
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Figure 11. Reinforcement learning evacuation planning model adaptations. The yellow dots repre-
sent two endpoints between a route. The blue dots represent flooding points in the environment.
(a) Using road type ‘all’ to set road preference. (b) Using road type ‘primary’ to set road preference.
(c) Multi-stops route planning in Houston small road network.

denotes the total length from start point to destination), the agent will choose a dif-
ferent route to complete the task (shown in Figure 11(b)).

Compared with other heuristic algorithms, reinforcement learning shows good
adaptability so developers can easily add multiple tasks without redesigning the policy
optimization method (Cai et al. 2019). For example, emergency managers often need
to add stops during evacuation planning (eg picking up their child from school). By
adding a bonus point in the road network that returns an extra reward to the agent,
we can fine-tune the model to plan a multi-stop route in a dynamic environment
(shown in Figure 11(c)).

As shown in Figure 8, our method is not significantly affected when attempting to
create a 'safe’ route versus a ‘short’ route. The reinforcement learning model seeks to
make an informative decision that leverages the different conditions to create a better
route. However, a ‘do not get flooded’ bottom line still restricts the agent’s behavior.
This restriction is beneficial for developers and users to understand its strict character-
istics for future development and usage.

7. Future works

Although our analytical experiments demonstrate good results in route planning, testing
on real flooding events is needed to validate our algorithms. Future research will focus
on a field experiment with actual weather and road conditions to put the theoretical
work into practice. This will also provide an opportunity to test the potential inclusion of
more complex actions in the action space, thus further enhancing the practicality and
versatility of our model. Extending this approach to broader impacts, our RL routing algo-
rithm can also be adapted for future self-driving systems and even exoplanet rovers.
Given the similarities of disaster events, exoplanet rovers also lack external guidance.
With limited online information (GPS or other satellite imagery), the reinforcement learn-
ing agents can be trained to navigate the rover to its destination.

Moreover, the inherent flexibility of reinforcement learning provides the possibility
of incorporating more complex actions into the action space, including 5-way
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intersections and U-turns. At the same time, these actions can enrich the algorithm'’s
capacity and enable the agent to navigate through more complicated road networks.
On the other hand, these new features will increase the algorithm’s computational
complexity in terms of convergence and exploration which should be considered in
the implementation stage. As part of our future endeavors, we plan to explore add-
itional training and optimization techniques, such as the use of a pre-trained routing
policy (Wu et al. 2023). We anticipate that such improvements could considerably
broaden the applicability of our model to a diverse array of road situations.

8. Conclusion

In this study, we developed an RL-based routing algorithm to help people navigate in
urban areas during flooding events under complex, information-limited, and dynamic
road network conditions. Our graph-based RL model, equipped with real-world action
design and reward settings, has demonstrated practicality and feasibility in navigating
real-world scenarios with multiple flood information sources. The key findings and
implications of our study are:

e Our model effectively learns spatial information around flooding areas, produc-
ing high-quality evacuation routes even in the face of changing road condi-
tions (eg road closures caused by flooding) and limited neighborhood
information.

e The integration of reinforcement learning into the routing algorithm represents a
significant intellectual contribution to GlScience, enabling navigation in complex
and dynamic large road networks.

e The practical implications of our research extend to the field of disaster manage-
ment, providing safe evacuation routes during flooding events by embedding rout-
ing information during the training processes.

e The versatility of our method allows for adaptation to other disaster events such as
earthquakes or volcanic eruptions, making it a valuable tool for urban navigation.

Despite these promising results, our research has limitations, particularly regarding
the scalability of the model to larger road networks (eg nationwide) and the need for
training resources. Future research directions should focus on improving the model’s
scalability and incorporating effective training methods, such as pre-training techni-
ques. We believe that these improvements will further enhance the utility of our
model in disaster management and safety planning.

Notes

1. https://blupix.geos.tamu.edu/MapPage
2. https://data.cityofnewyork.us/Social-Services/NYC-311-Data/jrb2-thup
3. https://github.com/mebauer/nyc-311-street-flooding.
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Appendix A. Distance calculation

Distance calculation between two points in our project use great circle distance formula:

d = rAc = arccos( sin ¢, sin ¢, + €os ¢, cos ¢, cos AL)r (20)
where 4 and ¢ denote the geographical longitude and latitude of two points 1 and 2; Ac
denote as the central angle between two points and r denote the radius of the earth.
Appendix B. Road network summary
Table B1. Road networks summary of Houston and New York in our experiments.

City Avg. Grade Med. Grade Interactions Edges
Houston (Small) 2.0% 1.3% 1521 4088
New York City (Small) 3.6% 2.5% 1281 2572
Houston (Large) 1.1% 0.7% 72486 182525
New York City (Large) 2.0% 1.3% 81099 205896
Appendix C. Evaluation summary

Table C1. Summary of evaluation scores.

Method Environment Metric. Score

Dijkstra New York City (Large) Safety 1450.23
ReinforceRouting New York City (Large) Safety 1663.01
Dijkstra Houston (Large) Safety 1798.06
ReinforceRouting Houston (Large) Safety 1963.90
Vanilla-RL Houston (Small) Reward —0.54
RE-RL Houston (Small) Reward 0.71
Vanilla-RL Houston (Small) Episode Length 20.5

RE-RL Houston (Small) Episode Length 87.7

RE-RL Houston (Large) Reward 0.12
ReinforceRouting Houston (Large) Reward 0.62
Vanilla-RL Houston (Large) Episode Length 20.5

ReinforceRouting Houston (Large) Episode Length 87.7

Appendix D. Road network statistic

Table D1. Road networks statistic of top four largest cities in U.S.

City Avg. Degree Med. Degree Std. NO* NT* N2* N3* N4* N5*
New York City 2.51 3.00 0.905 0.12 15.16 29.65 42.35 12.60 0.11
Los Angeles 277 3.00 0.977 0.08 15.81 13.45 47.90 22.62 0.11
Chicago 2.74 3.00 0911 0.12 11.28 23.06 4577 19.58 0.13
Houston 248 3.00 0.934 0.14 17.35 30.48 38.66 13.34 0.02

*Nx means the percentage of the nodes in the road networks have x neighbors.
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